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Abstract

In this the second of an anticipated four papers, we examine polygenic risk
scores from a quantitative genetics perspective. In its most simplistic form,
a polygenic risk score (PRS) analysis involves estimating the genetic effects
of alleles in one study and then using those estimates to predict phenotype
in another sample of individuals. Almost since the first application of these
types of analyses it has been noted that PRSs often give unexpected and
difficult-to-interpret results, particularly when applying effect-size estimates
taken from individuals with ancestry very different than those to whom it is
applied (applying PRSs across differing populations). To understand these
seemingly perplexing observations, we deconstruct the effects of applying
valid statistical estimates taken from one population to another when the two
populations have differing allele frequencies at the sites contributing effect,
when alleles with effects in one population are absent from the other, and
finally when there is differing linkage disequilibrium (LD) patterns in the two
populations. It will be shown that many of the seemingly most confusing
results in the field are natural consequences of these factors. Given our best
current understanding of human demographic history, most of the patterns
seen in PRS analysis can be predicted as resulting from systematic differences
in allele frequency and LD. Put the other way around, the most challenging
and confusing results seen in cross population application of PRSs are likely
to be the result of allele frequency and LD differences, not differences in the
genetic effects of individual alleles. PRS analysis is an important tool both
for understanding the genetic basis of complex phenotypes and, potentially,
for identifying individuals at risk of developing disease before such disease
manifests. As such it has the potential to be among the most important analysis
frameworks in human genetics. Nevertheless, when a PRS is trained in people
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with one ancestry and then applied to people with another, the PRS’s behavior
is often unpredictable, and sometimes is seemingly perverse. PRS distributions
are often nearly non-overlapping between individuals with differing ancestry,
i.e., odds ratios for unaffected people with one ancestry might be vastly larger
than affected individuals from another. The correlation between a PRS and
known phenotype might differ substantially, and sometimes the correlation is
higher among people with ancestry different than the one used to create the
PRS. Naively, one might conclude from these observations that the genetic
basis of traits differs substantially among people of differing ancestry, and
that the behavior of a PRS is difficult to predict when applied to new study
populations. Differing definitions of genetic effect sizes are discussed, and
key observations are made. It is shown that when populations differ in allele
frequency, a locus affecting phenotype could have equal differences in allelic
(additive) effects or equal additive variances, but not both. They cannot have
equal additive effects, equal allelic penetrances, or equal odds ratios. PRS is
defined, and its moments are derived. The effect of differing allele frequency
and LD patterns is described. Perplexing PRS observations are discussed
in light of theory and human demographic history. Suggestions for best
practices for PRS construction are made. The most confusing results seen in
cross population application of PRSs are often the predictable result of allele
frequency and LD differences. There is relatively little evidence for systematic
differences in the genetic basis of disease in individuals of differing ancestry,
other than that which results from environmental, allele frequency, and LD
differences.

Keywords: quantitative genetics; human disease; polygenic risk scores;
cross-population risk scores

1. Introduction

The latest genome-wide association meta-analyses include over one million
individuals and have begun to explain a more appreciable portion of disease
heritability, improving our knowledge of the genetic factors underlying many
adult-onset conditions to the point where polygenic risk profiling provides
clinical utility. For example, approximately 80 loci explain 20% of coronary
artery disease heritability, 100 loci explain 20% of type 2 diabetes heritability
as estimated from the correlation between close relatives, 20 loci explain
30% of Alzheimer’s disease heritability, 150 loci explain 20% of the familial
relative risk of breast cancer, and 100 loci explain 33% of the familial relative
risk of prostate cancer [1]. Polygenic risk scores (PRSs) broadly attempt to
provide a quantitative measure of an individual’s total genetic risk burden of
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disease over all susceptibility variants identified by genome-wide association
studies [2]. PRSs are most commonly calculated within a testing sample as a
weighted sum of the number of risk alleles weighted by their measured effect
sizes estimated from an independent GWAS training dataset.

The prediction of individual- and group-level disease susceptibility is one of
the most promising uses of polygenic risk information for early detection,
intervention, and personal health management. For example, current
guidelines recommend women initiate biennial screening mammography at
50 years of age [3]. A breast cancer PRS, together with clinical risk factors (e.g.,
smoking, BMI), identified 16% of the population who could initiate screening
at 40 years old as their risk exceeded that of an average 50-year-old as well as
32% of the population that could delay screening at 50 years old since their
risk was lower than that of an average 40-year-old [4]. In this prognostic
medical genetic context, a PRS developed in a training study is applied to
individuals with unknown phenotype (i.e., not yet diagnosed with disease) in a
test population, given their known genotypes. Despite these great strides in
characterizing the underlying genetic architecture of human diseases and the
obvious potential of polygenic risk profiling, the field is riddled with seemingly
perplexing observations that have limited the portability of PRSs between
populations - and as a result, limited the overall perceived clinical utility of
PRSs.

Martin et al. (2017) used published GWAS summary statistics to infer PRSs
across populations for several well-studied traits in an effort to quantify the
transferability of polygenic risk prediction, identifying clear directional
inconsistencies in these inferred scores. When PRSs for height trained in
European-biased genetic studies are tested in African or East Asian
populations, both the PRS mean and variance appear to be considerably lower
in Africans and East Asians [5, 6]. Based on these PRS distributions, African
populations are genetically predicted to be shorter than all Europeans and
only minimally taller than East Asians with very little diversity in height, which
contradicts empirical observations. Similarly, PRSs for schizophrenia trained in
European-biased genetic studies have a considerably decreased mean when
tested in Africans compared to all other populations [5, 7]. Thus, African
populations are predicted to have significantly lower genetic risk for
schizophrenia based on these PRS distributions, despite a similar prevalence
and significant shared genetic variation tagged by SNPs for schizophrenia
across populations [8]. Similarly, PRSs derived from SNPs trained on European



Human Population Genetics and Genomics, 2024;4(3):0008 Page 4 of 65

populations appear to underestimate the risk of cardiovascular disease in
African individuals [9].

On the other hand, when PRSs for type II diabetes and asthma are trained in
multi-ethnic cohorts, the PRS mean and variance are both larger in African
populations than any other population tested - underestimating risk in
Europeans, Asians, and admixed individuals from the Americas [5, 10, 11].
Despite highly significant overlap of common variant risk for inflammatory
bowel disease between African and European individuals, Somineni et al.
(2021) found differential performance of PRSs as a function of the training
population. PRSs trained in African Americans yielded a 7-fold elevation in IBD
prevalence in the top percentile of polygenic risk when tested in African
Americans (7.4% prevalence) but underestimated risk when tested in
Europeans (2.5% prevalence in top percentile), in addition to explaining more
than double the variance with African American compared to European
summary statistics [12]. PRSs trained in Europeans yielded comparable 3-fold
elevations in the top percentile of polygenic risk when tested in Europeans
(3.0%) and in African Americans (2.8%), but the proportion of variance
explained by the PRS with African American summary statistics was less than
half of the variance explained with European summary statistics [12].

More recently, Jeon et al. (2023) evaluated the efficacy of genomic PRS models
of acute lymphoblastic leukemia based on discovery GWAS in either
non-Latino Whites, Latinos, or multi-ancestry populations. The PRS trained in
non-Latino Whites explained a greater proportion of variance when tested in
non-Latino Whites compared to when tested in Latinos and significantly less
variance than the PRS trained in Latinos and tested in Latinos [13]. The PRS
trained on multi-ancestry GWAS data explained equal proportions of variance
when tested in non-Latino Whites and in Latinos, which was significantly more
than the variance explained by the PRS trained and tested in non-Latino
Whites and comparable to the variance explained by the PRS trained and
tested in Latinos [13]. Senftleber et al. (2023) conducted GWAS analyses of
lipid traits in Greenlanders and found a PRS using variants from only 11
genome-wide significant signals explained 16.3% of the variance in
LDL-cholesterol in Greenlanders, whereas 2 million variants are needed to
explain up to 22% of the variance in LDL-cholesterol in Europeans [14].

In a follow-up paper, Martin et al. (2019) assessed the decay of polygenic
prediction accuracy for quantitative anthropomorphic and blood panel traits
when using European-derived summary statistics. Relative to European
individuals, genetic prediction accuracy was 1.6-fold lower in Hispanic/Latino
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Americans, 1.7-fold lower in South Asians, 2.5-fold lower in East Asians, and
4.9-fold lower in Africans on average [15]. Indeed, PRSs for breast cancer
constructed using susceptibility loci derived from European-ancestry GWAS
had lower discriminatory ability (areas under the receiver operator curves)
and inadequate predictive value for breast cancer risk assessment among
Hispanic, African American, and African women [16, 17]. A PRS for breast
cancer developed in White European populations demonstrated good
discrimination but significant overestimation of breast cancer risk in
unaffected Ashkenazi Jewish women, reflected in higher mean PRSs in both
cases and controls [18]. Such considerable overprediction of breast cancer risk
has the potential to lead to harms through the delivery of enhanced
preventive measures such as risk-reducing mastectomies, illustrating the
danger of misapplying PRSs across populations.

A simple summary of the PRS literature might state that the informativeness
of a PRS is inversely proportional to the “genetic distance” between the
population used to estimate the genetic effects and the population where
those effects are applied [19]. To a population geneticist, the term genetic
distance is almost always defined as a function of the variance in allele
frequency between populations. Thus, to a population geneticist, this
observation reads very much like the informativeness of a PRS is a function of
the variance in allele frequency between populations. Consistent with this
intuition, Wang et al. (2020) [20] found that linkage disequilibrium and minor
allele frequency differences between ancestries can explain between 70-80%
of the loss of relative accuracy of European-based PRSs in Africans for traits
like body mass index and type II diabetes. It should be noted, though, that the
authors were only able to examine allele frequency and LD at common SNPs,
rather than data from whole-genome sequencing. When effect sizes are
estimated in admixed (African American) individuals accounting for the effects
of all variants in a genetic region, the estimated effect size (measured as a §,
see below) for virtually all variants and phenotypes examined appeared to be
substantially similar, regardless of the genetic ancestry of the variants [21],
although confidence intervals were sufficiently broad that some differences in
B's cannot be ruled out.

2. Materials and Methods

While many of these observations seem perplexing at first, they are, in fact,
relatively easy to understand and predict from basic quantitative genetics
theory. To formally understand PRSs, we will begin with a Kempthorne [22]
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inspired interpretation of genetic effects [23]. In a Kempthorne modeling
framework, a genetic effect is not a fixed immutable quantity but is the average
contribution of a genetic factor to phenotype, where that average is taken over
all other genetic and environmental factors experienced by individuals. This
framework makes modeling of PRS analysis straightforward, but an immediate
implication is that if allele frequencies or LD differs between populations then
most measures of genetic effect must also differ in predictable ways. In fact,
it will be shown that there are very few measures of genetic effect that can
be the “same” if two populations differ in allele frequency or LD. On the other
hand, if one adopts a more Falconer [24] inspired view of a genetic effect
(fixed immutable quantities), then differing LD / allele frequencies between
populations imply the populations necessarily have differing means and/or
variances for the phenotype in question. If the populations are believed to have
similar means and variances, and allele frequencies differ, then in a Falconer
view, either the effect of a specific gene cannot be the same, or there must
also exist “something else” that differs in a way that exactly negates the effects
of the allele frequency / LD difference [23]. The notion of the existence of
other factors that repeatedly and precisely undo the effects of differing allele
frequency and LD is a bit hard to imagine mechanistically, and even if they
do exist, modeling such factors will likely lead to a framework fundamentally
equivalent to Kempthorne's in all meaningful ways. Thus, our attempt to
understand PRSs starts with a Kempthorne interpretation of genetic effects.

For the next several sections we will present analysis first for a fully quantitative
trait, a phenotype which is effectively continuously distributed in the population.
After we will show how to apply and adapt the same analysis framework to
binary traits, phenotypes with two states, often diseased or not diseased.
Fundamentally, all that we do applies equally well to both types of phenotypes
but with somewhat different methods of calculation, and we will eventually
unify the analyses by transformation of effect sizes to the liability scale for
binary traits. Beginning with a quantitative trait, we assume that the trait is
fundamentally finite, with finite moments, but we do not necessarily assume
that it is normally distributed [23]. When we require this normal assumption,
we will explicitly invoke it, and describe why it is needed. Throughout all of this
paper we will attempt to follow the notation and framework established in the
first paper in this series.
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2.1 Measures of effect sizes

At the heart of a PRS is the application of genetic effect sizes estimated from
one study, called here the “training” study, and then used to predict phenotype
in another study, called here the “test” study. In order for this procedure
to make sense at all, the investigator must be explicitly assuming that the
estimated effect in the training study is similar or the same as the effect in
individuals in the test study. Thus, to understand PRS we must first examine
what sort of genetic effects might reasonably be assumed to be the same. To
be specific, begin by considering a single locus in Hardy-Weinberg equilibrium
with two alleles Ay and A; [23]. Let p be the frequency of the Ay allele and
g =1— p be the frequency of the A; allele, and assume that we have labeled
the alleles such that p > 4.

2.1.1 Continuous traits

For a continuous trait, there are at least three measures of effect size that
might be thought to be the same between studies: the allelic (also called the
additive) effects ap and a1, the difference in allelic effects p = a3 — a9, and the
additive variance V, = 2pgB? due to the locus [22, 23]. We will show that if two
studies have differing allele frequencies, they must have differing a's, and while
they could have the same g or V,, they can not have both simultaneously, i.e., if
two populations have differing allele frequency they might have the same g or
the same V;, but not both. This will be clear with formal appeal to definition.

Recall that for all phenotypes P we first normalize so that the average
phenotype is zero, E[P] = 0. The definition of the additive effect of allele Ay is
the conditional expectation of phenotype given that a randomly picked allele
Ais Ag. Thus, oy = E[P|A = Ap] and a1 = E[P|A = A;]. A consequence of the
population having a 0 mean phenotype is

E[P] = Pr[A = Ag|E[P|A = Aq] +Pr[A = Aj|E[P|A = A{] (1)
= pag+qur = 0. (2)
w = (3)
p
by = P20 (4)
q

Thus, if two populations have differing allele frequency, differing p, they
necessarily have differing additive effects of these alleles, unless there is no
effect at all, ap = a1 = 0. To see this explicitly, if two different populations have
allele frequencies p and p* with p > p*, say, and corresponding additive
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effects ag, a1 and ag, af with additive effects of one allele being the same
ng = «fy then the additive effect of the other allele must differ.

ﬁ — _Pq*"‘o (5)
o —p*qag
— P (6)
P
> 1 (7)

It is a simple matter of definition. It is impossible for two populations with
differing allele frequencies to have the same additive effects of both alleles,
unless there is no additive effect for either allele, xp = a1 = 0.

The most natural measure of genetic effect that might be the same between
populations is the difference in the additive effects of the alleles, p = a1 — ag.
Two populations can have allele frequencies that differ but still have the same
difference in allelic effects, . However, differing allele frequency necessarily
implies additive effects themselves differ between populations. If B = * but

p # p* then

p =B (8)
a—ag = af —af (9)
ucl——qlxl = ai‘—i*al (10)

P P
(37) - a7

p p
o w{(’i), (12)

p

using the fact that allele frequencies sum to one. While the difference in
additive effects, g, may be the same between populations, the actual additive
effects themselves differ by ratios of the allele frequencies.

Another measure of effects that might be the same between populations
with differing allele frequency is the additive variance explained by the SNP,
V., = 2pqpB?. If two populations have differing allele frequencies with p > p*,
then 2pq < 2p*q* because we have oriented alleles so that p > 4. If these two
populations have the same additive variance due to this locus, V, = V, then
these populations necessarily have differing additive effects.
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vV, = V- (13)
2pq(B)* = 2p*q*(B)* (14)
(ﬁ>2 _ Ty (15)

B 2pq
(B? > (B (16)
(w1 —g)® > (af —a})> (17)

In this we see that if two populations have the same additive variance at a
locus, but differing allele frequencies, the population with the larger difference
in allele frequencies must have a larger difference in additive effects. Put more
intuitively, the additive variance of a locus can be thought of as the product
of the allele frequency variance, 2pg, and the variance due the difference in
additive effects, g2. If two populations have equal total additive variance, 2pq3?,
the population with the smaller allele frequency variance, 2pg, must have larger
variance due to the difference in additive effects, /32. Thus, if additive variance
is the same between populations then differing allele frequencies forces the
conclusion of differing allelic effects in the populations.

2.1.2 Binary traits

Human disease studies are often most interested in binary phenotypes,
diseased or not diseased. For binary traits generally the only reported effect
size is an odds ratio, OR (defined below). There are very practical reasons this
is the case [23]. However, to use our quantitative genetics tools, we generally
[25] model a binary phenotype as resulting from the existence of a threshold ¢
on an unobserved normally distributed phenotype, L, that we usually call
“liability” to the disease in question. Here we make a stronger assumption
than needed for most continuous trait analysis: we assume liability is normally
distributed, parameterized to have mean 0 and variance 1 for computational
convenience. Thus, liability is assumed to follow a standard normal density
¢(x), with standard normal cumulative distribution ®(x). The overall
population prevalence of the disease, ¢, is uniquely determined by the
threshold t (Figure 1), and vice versa.

p = /too(p(x)dx. (18)
t = & 1(1-9p) (19)
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Figure 1 Normally distributed liability with disease-determining threshold at liability
greater than 2.

The penetrances, {y and {;, of alleles Ay and A; with additive effects «y and
«q are defined as the probability an individual is diseased given they have the
allele in question. Using the approximation [23] that 1 —V, = 1, as it is for
virtually all known alleles contributing to complex disease phenotypes [26],

¥ = plo+qdi (20)
oo~ [ e 1)

= 1-®(t—a). (22)
g ~ t—d(1-7{). (23)
o o= (24)
v o~ =0 1-0). (25)
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In this we see that the additive effect of an allele uniquely determines its
penetrance, and vice versa. The odds ratio (OR) of allele A; to Ay is defined as

C1(1—20o)

— allzc) 26
OR (1—-21)%0 (26)
v—q1
_ ol <1_1‘?> (27)
(1 —51)%?
(1=C) (¢ —q1) (28)
-0 $—ai (29

Presented in this format, it seems far more intuitive that an OR is fundamentally
a function of three things: the frequency of the alleles, p, g4, the penetrance
of alleles, ¢, and the overall prevalence of the disease, . That it is possible
to estimate the OR without explicit knowledge of the prevalence or allele
frequency does not change the fact the underlying quantity is per se a function
of frequency and prevalence. If two populations have the same odds ratio,
OR = OR*, then

Oop—W-qi) _ &G p—-@—q7) (30)
1-01 ¢—ql I e NS
G- _ (- —98)y—q0) (31)

Ga-a)  (p—(@—a90) W —q°¢7)

Thus, if the odds ratio of allele A; to Ay is the same in two populations, then
the odds of allele A, 1%—1& in one population divided by the odds of A; in the
other population, 15—151 is a ratio of the allele frequencies in the two population
multiplied by a ratio involving the prevalence, frequency and penetrance of the
allele. If we further believe the “reason” the two populations have the same
OR is because the penetrance of A;, the chance of developing disease given

you have an Ay, is same in the two populations then

=0 = ¢ (32)
(P—@W =g ) —q0) = (p—(¥—90))Y"—q"0) (33)
v—qf  _ Vv —q°C (34)

p—(¥—q0) pr— (@ —aq°0)
Two populations with same OR can have the same penetrance for an allele if
and only if they have the same allele frequency in both populations, p = p*,

and the same prevalence in both populations, i = ¢*, or the ratio of allele
frequencies between the populations is somehow “forced” to be determined
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in a rather complex way by the penetrance, prevalence and frequency in each
population. While we can imagine it is possible for this complex relationship
to exist at some particular moment in time, if the allele frequency in either
population were to fluctuate slightly, the prevalence and penetrance would
have to simultaneously alter in a precise manner to track the allele frequency
perturbation. Effectively this can only be true for a disease model where allele
frequency, allele penetrance, and population prevalence are all tightly linked
together, effectively a Mendelian disorder where the frequency of a variant
determines its penetrance and population prevalence. For any complex human
disease with many genetic and environmental factors each contributing only a
tiny fraction of the total variance, the precise relationship required between the
two populations’ allele frequencies, disease frequencies and allelic penetrances
will never hold. Put more intuitively, the model where the OR can be the same
between two populations naturally arises out of a model where the frequency
of a disease is determined by the frequency of the allele. For a complex human
disorder where no allele has any strong effect on disease, the frequency of
disease is more realistically thought of as nearly independent of the frequency
of any one allele, and as such it is impossible for the OR of a complex trait to
be the same between two populations with differing allele frequency.

2.1.3 Most measures of effect size depend on allele frequency

Thus, we arrive at a basic truth. If two populations have differing allele
frequency, a locus affecting phenotype could have equal differences in allelic
effects (equal B's) or equal additive variance at this locus (equal 2pgB?), but not
both. They cannot have equal additive effects per se (a's), equal allelic
penetrances ({'s), or equal odds ratios (OR's). An important corollary to this is
that if two studies have differing allele frequencies for a particular variant,
there is no straightforward way to “average” the odds ratios between the two
studies. If one were to perform a “meta-analysis" (usually done as an
inverse-variance weighted average) on OR'’s generated by two studies with
differing allele frequencies, even if the underlying g's are the same in both
studies and the OR'’s were both estimated without error, the “meta-OR" will
differ from the true value for both studies, and in a very real sense be worse
than either. This phenomenon will be seen in a slightly different context in the
fourth paper in the series when examining sex-specific prevalence differences.
Of course, for a quantitative geneticist the natural way to overcome these
concerns is by first transforming effects to the liability scale and performing
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any sort of averaging / meta-analysis on the g values estimated on the liability
scale, not on the OR’s themselves.

2.2 PRS implementations

As a general rule, PRS analysis begins with the estimation of the effect sizes,
generally reported as a § for a continuous trait or as an OR for a binary trait, at
alarge number of SNPs in a large collection of individuals with some phenotype
of interest in the training study. After determination in the training study, effect
sizes are generally taken to a different study population, the test study.

Assuming the training study estimated effects at a very large collection of
genomewide SNPs, generally the first step in forming a PRS is to “thin” the
markers. Thinning markers is a very practical approach to the challenges
induced by LD. As discussed in some detail in the first in this series, LD,
correlation between allelic states at neighboring SNPs, causes departures
from additivity between those neighbors. The combined genetic effect of two
markers in LD is, as a rule, very different than the sum of their individual
effects, and in many circumstances smaller [23]. In the Kempthorne
framework, we see that LD often leads to a “negative” interaction between
neighbors, and the joint variance explained by two markers is smaller than
the sum of their individual variances. From a Falconer viewpoint, one would
say the estimated effect at one SNP is inflated by genetic effects of its
neighbors. With this world view, one might intuitively think about a given
region where there is only one SNP with a “real” effect, but all of its neighbors
who themselves have no “real” effect will have inflated estimated effects
caused by LD with the one “real” SNP.

As we previously suggested, there are straightforward approaches to model
LD and estimate what effect sizes would be in the absence of LD (i.e., the “true”
effects with a Falconer view), but most PRS applications take a slightly different
tactic. In the most straightforward approach, often imagining that within any
small genomic region only a single SNP will have a large LD-independent effect
on phenotype, the SNP with the largest effect in the training study is selected
first. Next all other SNPs with sufficiently large LD with the picked SNP are
eliminated. This process then repeats, picking the remaining SNP with the
largest effect size, and then eliminating all others in high LD with it, until all
SNPs have either been picked or eliminated. The collection of picked SNPs, the
SNPs after thinning, and their estimated effects will be the set of SNPs used
to construct the PRS. There can be innumerable subtle variations on the SNP

thinning algorithm [27, 28, 29, 30, 31, 32], including the application of some
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quite sophisticated machine learning algorithms, but the essential logic for all
of them will likely be similar: find SNPs thought to have large effects individually
or in combination, remove neighbors whose apparent effects appear to be
explained by previously chosen variants, repeat. These processes might use
explicit estimates of LD in the process or any sort of surrogate involving physical
distances or other measures of correlation in allelic state.

2.2.1 Continuous traits

Given a set of n SNPs after thinning, code the genotype of individual j at SNP
v as Sy, where So; is the count of the A; alleles at locus v found in individual
j. Thus, So, =0 when individual j has genotype ApAp at locus v; So, =1 when
the genotype is A¢gA;, and S,, = 2 when the genotype is A;A;. If B, is the
estimated difference in allelic effects at locus v, then the PRS for individual j,
PRS;, is usually given by

PRS; =Y BuSs,. (35)
v=1

The quantitative geneticist immediately notices that PRS; is NOT the expected
phenotype of individual j! Recall that the expected phenotype of individual j is
0, ie., E[Pj] = 0. On the other hand, the expected PRS value for individual j is

E[PRS;] = E [f ﬁvSvj] (36)
v=1
v=1
= Z 2‘10,311 (38)
v=1
= ) 2q5(ay, — gy) (39)
v=1
_ i qz](_pvﬂévo _ Dézm) (40)
v=1 Jo
- Z _Zavg(pv + %) (41)
v=1
= 2 Z oy (42)
v=1

Var[PRS;] = Y 2p.qoPa. (43)
v=1
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where w,, is the additive effect of the Ay allele at locus v. Thus, a PRS
calculated in this manner has a mean that differs from the population mean
by a constant which is twice the sum of the allelic effects of the A allele at all
SNPs contributing to the PRS. If two populations have differing allele
frequencies, the PRSs will necessarily differ in their mean, because the allelic
effects, a,,, Nnecessarily differ. Stated even more straightforwardly, the mean
of a PRS is twice the sum across all the SNPs of the g's multiplied by the
population minor allele frequency. There is no escaping the intuition that the
PRS mean is fundamentally a measure of allele frequencies. If two
populations have differing allele frequencies, they must have differing PRS
means, if they have equal genetic effects (B's).

2.2.2 Binary traits

For binary traits, a PRS is generally calculated under an assumption that OR’s
multiply between loci, and therefore the log(OR)’s sum across loci. For person

]
PRS; = ilog(ORv)Svj. (44)
v=1
E[PRS]] = i2qvlog(ORv). (45)
v=1
Var[PRS;] = inqulog(ORv)z. (46)
OR; = 7;11{51'. (47)

where log(OR,) is the natural log of the OR for SNP v, usually estimated in a
logistic regression. This value is often reported with the symbol g to emphasize
its natural affinity with effect sizes found in a linear regression. If PRS; is itself
normally distributed, perhaps because it is the sum of many factors, then using
the fact that for any continuous probability distribution f(x) and continuous
function g(x), E[g(X)] = [, ¢(x) fx(x)dx, for a normally distributed random
variable X, with mean u and variance ¢?
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whenever the variance (Equation 46) is small. Overall, we see that the mean
PRS is a function of the minor allele frequencies in the population in which it is
applied. If two populations have differing minor allele frequency, then they
have differing average PRS. If individual j's odds ratio is taken as %%, then
this value is meaningful within a population, as it is an approximation to the
odds ratio of j to an individual with genotype ApA at all loci. However, these
values are literally impossible to compare between populations because of the
difference in PRS means caused by differing allele frequencies.

Finally it should be noted that a reference person with genotype AyA, at all
loci is unlikely to exist if the PRS included many loci. For instance, if the major
allele frequency were 0.9 at every locus, and a 100 uncorrelated loci
contributed to the PRS, then fewer than one in a billion individuals would be
expected to have reference genotype AyAy at all loci. Thus, Equation 47 is the
odds ratio of real people in the study to a reference individual that could exist
in theory, but is very unlikely to be observed. Differing allele frequencies
between studies result in differing probabilities the reference individual exists.
Differing choice of variants to include in a PRS results in differing reference
individuals. Both greater minor allele frequency and more variants will
decrease the probability a reference individual actually exists. Thus, in two
populations with differing allele frequency, the OR calculated in Equation 47 is
a comparison between an individual in the given population to a theoretical
individual whose likelihood of existing differs between populations. To the
classically trained population geneticist, this analysis will be reminiscent of
Ewens’ critiques of the interpretation of genetic load [33].
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2.2.3 Numerical toy example

To give the reader an intuitive understanding of what the above mathematics is
describing, here we show a very simple-minded “toy” example demonstrating
how changing allele frequency alone can dramatically affect a PRS. The situation
described is not meant to be realistic, but instead to illustrate what could
happen if there were systematic correlation between minor allele frequency
and the direction of effect, combined with systematic differences in allele
frequency between training and test studies.

Imagine what might be a “typical” successful PRS, one with 100 different SNPs,
all unlinked to one another which in total explain five percent, Vprs/Vp = 0.05,
of the total phenotypic variance in the training study. For numerical simplicity
assume that Vp = 1 and that the frequency of the common allele is the same
at all loci with p = 0.8, all loci contribute equally to the trait, and so that the
difference in allelic effects is the same at all loci with B ~ 0.03953. Notice that
in this toy example the minor allele is associated with increasing trait (liabilty)
value at all sites, i.e., the sign of  is positive at all sites. If we were to plot the
distribution of PRS across individuals in the training study we would see an
approximately normal distribution with standard deviation ~ 0.22 (Figure 2).

Now suppose we were to apply this PRS in a test study where the difference
in allelic effects, g are the same at all 100 SNPs as they are in the training
study. However, imagine that by some extremely unfortunate chance all the
allele frequencies are different in a systematic way. Imagine that in the second
population p = 0.9 at all loci. Thus, in these two populations the genetic effects
are exactly the same, and the only difference is in the frequency of the alleles.
As is likely to be intuitive to careful readers, the variance due to the PRS, Vpgs, in
the test population will be less than the training study, because 2pq is smaller at
each locus by a factor of 5%, and therefore in the training population the overall
variance explained by the PRS will be smaller by a factor of 5. The standard
deviation of the PRS distribution in the test population will be 75% as large
as the training population. The means, however, will be vastly different. The
mean PRS in the test study will be ~ 7 standard deviations below the training
study (Figure 2). For most practical purposes these distributions do not overlap.
In this numeric example, systematic differences in allele frequency lead to
potentially detectable differences in PRS variance, but also lead to profound
differences in mean. The intuition for why this happens derives from individual
SNPs each having only a moderate effect on the PRS (8 < 1), resulting in g > 2.
Since the contribution to variance for each SNP is 2pgB?, but the contribution
to mean is 2gpB, the effect on mean is vastly larger than the effect on variance.
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This is not meant to provide a realistic picture of any real PRS data set but
instead to establish an intuition for what could happen if there are two specific
types of correlation not generally anticipated by most PRS investigators. If
the sign of g is correlated with minor allele frequency, and allele frequencies
vary in a systematic way between training and test studies, then PRS will vary
between training and test studies in predictable ways. That there is likely to be
correlation between the sign of g and minor allele frequency within studies
is the topic of Section 2.6. That there is likely to be correlation in minor allele
frequency between studies is discussed in Section 2.7 and beyond.

Distribution of PRS

2.0
1.5
>
Q
o
[}
>
o
o
LL . P .
1.0 Test Population Training Population
0.5
0.0
-1 0 1 2
PRS

Figure 2 PRS distribution in the training study (Blue) and test study (Green). In this
numeric example the only difference between the test and training studies is minor
allele frequency which is systematically lower in the test population.
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2.3 Using a PRS

PRSs are seen primarily in two related contexts. In the first context, we might
wish to ask to what extent does a PRS developed in one collection of individuals
(a training set) accurately predict the known phenotype of individuals in a
second study (a test set), where we compare the predicted phenotype to
the known phenotype in the test set. In this context we are fundamentally
assessing what fraction of the phenotypic variance is explained by the PRS
in this new collection of individuals. We could be doing this to compare and
contrast differing methodologies used to construct PRSs [28, 34, 35, 36], or we
might be doing so to establish the extent to which the phenotype of individuals
in the second study appear to have a similar genetic basis as the first [37,
38, 39, 40]. In a different context, we might wish to apply PRSs developed
in the training set to predict the unknown phenotype of individuals in the
test set, given their known genotypes. It is in this context that a PRS might
have significant medical utility [41, 42, 43], if, for instance, individuals with
a substantial chance of developing a disease later in life can be identified
long before such a condition develops, allowing interventions to be attempted
earlier to reduce that risk.

2.3.1 Continuous traits

Developers of PRS methodologies frequently wish to show how well PRS
predicts phenotype in a test study with known phenotype. For a quantitative
phenotype the usual method of evaluation is to calculate the squared
correlation between the PRS and the known phenotype, with the notion being
increasing squared correlation implies improving PRS. For a perfectly trained
PRS, the squared correlation between the PRS and phenotype should
converge to the heritability explained by the markers used to construct the
PRS whenever there is no dominance within a locus, there are no interactions
between genes, nor between genes and the environment, and the state of all
genotypes is independent of one another (ie., no LD between sites
contributing to the phenotype). To see this, imagine a PRS where the
estimated B, was equal to its true value at all included sites v, and imagine a
test study drawn from a population with the same g, at all sites. Letting PRS;
and P; be the PRS and true phenotype of individual j in the test study, and
letting SNPs n + 1, ..., N be sites contributing to phenotype not included in the
PRS, with M environmental factors also contributing, we find



Human Population Genetics and Genomics, 2024;4(3):0008 Page 20 of 65

P, = <2 ﬁvsvj> + (i 2%0> (54)
v=1 v=1
N M
+( Y ,BkSk].> + (Z em>. (55)
k=n+1 m=1

PRS; = f/ﬂvsvj. (56)
v=1
E[P] = 0. (57)
E[PRS]] = fzﬁquz —2iavo (58)
v=1 v=1
E[P; — PRS;] = E[P,] —E[PRS}] (59)
= —E[PRS]] (60)
Var[P;] = Vp. (61)
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where we use the lack of correlation between genotypes (no LD) extensively,
i.e., E[Sy;Sw;] = E[Sy,]E[Sw;]. With similar analysis we find
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where this adds the assumption of no interaction between any genetic and
environmental factors. It should be further pointed out that the allele
frequencies and additive effect of the A, alleles, p,,q., 2y, above are the
values from the test population. Nothing about this changes if the allele
frequencies, and therefore additive effects of alleles, differ between the
training and test populations. Calling Vprs = Y, Vo, = YI_,2pqB? the
additive variance due to the loci contributing to the PRS in the test population,
and k%, the heritability due to the loci contributing to the PRS in the test
population, we find the squared correlation coefficient, 2, between
phenotype and PRS is

COV2 [PRS], P]]

2 _
" T Var[PRSVar[P] (82)
(Vprs)?
= — 83
VprsVp (83)
_ Vpgs
= v, (84)
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Thus, if a PRS in a training study correctly estimates all f's, and those B's are
shared with the test population, and there are no interactions, the squared
correlation between the PRS in the test study and the phenotype of those
individuals is the heritability explained by the markers included in the PRS in the
test population. The careful reader will have noticed that this proof was made
substantially harder looking than it might have been because the PRS does not
have 0 mean. Nevertheless, nothing about this changes if the training and test
populations have differing allele frequencies, differing additive effects, and
therefore differing PRS means, so long as they have the same f's. Recall though,
that we began this section by asserting that the reason one was calculating
the squared correlation between PRS and phenotype was as a measure of
how “useful” or even “good” a PRS was. We have just shown, though, that this
measure is the heritability (additive variance over total variance) of the markers
used in the PRS in the test population. We have already seen above that if one
population has lower minor allele frequency, the additive variance due to the
locus will be less, and therefore heritability due to the marker will be less. So,
if a PRS is applied to two different populations, and one of them happens to
have lower minor allele frequency at most loci, then the PRS will appear to
be “doing worse” in the population with the lower minor allele frequencies,
even if all B's are identical and perfectly estimated. Using the numbers from
our toy numerical example, we would find that the correlation between PRS
and phenotype was about half (%) as “good” in the test study as it was in the
training population. More generally, since the squared correlation between
PRS and phenotype is a linear function of the variance due to the markers
used, which is a function of the allelic frequencies, it becomes intuitive that
the “utility” of a PRS is likely to be a linear function of the variance in allele
frequency between training and test populations (e.g., Figure 3 from [44]).

2.3.2 Binary traits

For a binary trait, failure to account for the differences in mean of a PRS
between populations with differing allele frequencies can lead to results that
appear so mysterious as to be virtually uninterpretable. Recall for a binary
trait a PRS is usually calculated with Equation 44 and has mean given by
Equation 52. If two test populations have differing minor allele frequencies,
the means of their PRS will also differ. For sufficiently large differences in
minor allele frequency, the two distributions might not even overlap. Using
the values from our toy numerical example (Figure 2), we would discover that
virtually no one in the training study had a PRS even remotely close to anyone
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in the test study, and that their PRS scores are on average ~ 7 standard
deviations apart. If we compared the inferred OR; for individuals between
these studies, we would conclude that everyone in one population was vastly
more likely to develop disease than anyone in the other population. Recall in
this toy example the two populations have identical genetic effects at all loci,
but there are systematic differences in allele frequencies.

2.4 Unification of continuous and binary traits with correction for allele
frequency

To simplify the presentation moving forward, we will generally assume that for
binary traits OR’s have been converted to effects on the liability scale. After
estimating an OR in a training study, we convert the OR to a  value, measured
on the liability scale, using prevalence, ¢, and allele frequencies, p and g, from
the training study. For any common disorder, a natural approximation would

be
OR = M (86)
(1—24,)C4,
91— ) (®7)
N ORy
Ca ™ 1+y(OR—-1) (88)

For a more rare disorder, where the OR might potentially be very large but ¢
small, the simpler approximation of

A

OR =~ (89)
(A,
ORy
Ca, 5+ qOR’ (90)

will likely be more practical. Using one of these estimates for the penetrance
of Aq, the conversion to effects on the liability scale finishes with

g = t—d N (1-24)). (91)

ny = % (92)
p

B = a1 —«p. (93)

We should remind ourselves that this used the fact that the variance explained
by this locus was relatively small. In this fashion, regardless of whether the trait
is continuous or binary, we assume the effect sizes have been estimated as a
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B which represents the difference in allele effects on the phenotype scale for a
continuous trait, or on the liability scale for a binary trait. For all that follows
whenever we refer to § we mean this value for either a continuous or binary
trait, as appropriate. Furthermore, to overcome the problem of PRS means
being a function of allele frequency, we will normalize PRS to have mean 0, by
using the appropriate allele frequencies, i.e., the allele frequency in the test
population when applied to a test population.

PRS; = ; Bo(So, — 240). (94)

E[PRS;| = E[ﬁ1 Bo(So, — 240)] (95)

— Uf;l BoE[Sy, — 2q,] = 0. (96)

Var[PRS;] = Vprs = HIZpUqUﬁ%. (97)

2.5 Medical genetics application

One of the most important practical applications of a PRS is to identify
individuals at risk of developing a disease who have not yet been diagnosed
with such a disease. If a prediction can be made sufficiently early, there is a
greater potential for early interventions that may reduce their risk. In this
medical genetics application, a PRS developed in a training study is applied to
individuals with unknown phenotype in the test population. This is done to
identify individuals with unusually large PRSs with the understanding that
individuals with unusually large PRSs have unusually high probability of
developing disease. Here we find the potential of this approach is determined
by the variance explained by the PRS, Vpgs, in the test population.

To model this, assume a binary disease with threshold t and total prevalence .
Continue to assume that the PRS has been normalized to have mean zero and
calculated on the liability scale as described above. Also assume that there
are a sufficiently large number of nearly independent loci contributing to the
PRS so that the score itself is approximately normally distributed with variance
explained by the PRS of Vpgs, and therefore with variance due to all other
factors 1 — Vprs. Imagine dividing the test population into PRS percentiles.
The first percentile includes anyone with PRS less than, tp;, and in general tp;,
1 <i<99is given by
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= ! (150) (98)

where ®~! is the inverse of a standard normal distribution, and tp; is in units
of /Vprs. Individuals in the it percentile are those with whose PRS is greater
than or equal to tp;_; and less than tp;. Let PRS; be the PRS of a randomly
chosen individual with PRS in the it" percentile.

E[PRS:] —V nggf’(tp V. (99)
V' Vprs@(p9s)

E[pRSu)O] - T, (101)

where ¢ is a standard normal density. These results are simple applications
of the mean of truncated normals [45]. Calling the penetrance of a randomly
chosen individual in the it percentile CPRS:

Cprs; = Pr[D|PRS]] (102)
- E[PRSi])
= 1-P| —— ). 103
( V1= "Vpgrs (103)
Cprs; (1 — )
ORpgs, — PR W) 104
PRS; (1= Cprs ) ¥ (104)

where ORpgs, is the odds ratio of a randomly chosen individual in the ith
percentile relative to a randomly chosen individual in the whole population.
Figure 3 plots this odds ratio for varying levels of Vprs for a disease with
threshold t = 2, and prevalence ¢ ~ 0.02275, i.e., a relatively common disease.
The utility of this approach is very much an increasing function of Vpgs in the
test population. It should also be clear why PRSs are thought to be so
promising for medical genetic applications. For a PRS that explains as little as
one percent of the total liability for disease, individuals in the highest
percentile have an odds ratio over 1.75. For a PRS explaining 10% of the total
variance, a PRS in the top 10% gives an odds ratio above two, and a PRS in the
top percentile has an odds ratio above 5, which is similar to some of the
highest ever estimated single locus contributors to any complex disorder, e.g.
the odds ratio of APOE4 for Alzheimer Disease has been estimated to be ~ 4.6
[46]. Odds ratios this large could justify early life interventions intended to
reduce risk. These Vprs values are from the test population, and are therefore
a function of allele frequencies in the test population.
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Figure 3 The PRS distribution is divided into percentiles. The odds ratio of average
members of a percentile group to average members of the population is plotted for a
disease with threshold t = 2, ¢ ~ 0.02275 and Vpgs of 1%, 5% and 10% of the total
variance. Notice what might appear to be a slightly counterintuitive result. The OR of
an individual at the 50t percentile of PRS is necessarily less than 1. This derives from
the fact that the residual variance, 1 — Vpgg is necessarily less than the total, and an
individual at the PRS median has a contribution to phenotype from the PRS loci of
exactly 0, the same mean as any randomly chosen individual with unknown PRS.
However such a random individual has residual variance 1.

When PRSs are not calculated with a step that normalize the mean to 0, it has
been obvious to many that PRSs for binary traits measured as OR’s cannot
be meaningfully compared between studies. To find something that could be
compared between studies, some investigators [47] measure the difference in
PRS means between cases and controls within a study. The difference between
case and control means within one test study might be then compared to the
difference in case-control means in a second test study. A larger difference
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between case and control means might be taken as the PRS performing “better.”
By now it is perhaps intuitive that the mean difference between case and
control PRS is also fundamentally a measure of the variance due to the PRS,
and this case-control difference will vary between studies with differing allele
frequencies. To understand why this is, continue to assume that PRS has
been converted from the OR scale to the liability scale and normalized to
have zero mean, as described above. Furthermore, continue to assume a
sufficiently large number of nearly independent loci contribute so that the PRS
distribution in the test population is well approximated by a normal distribution
with variance Vpgs. To find the mean of PRSs in cases (E[PRS;|D]) and controls
(E[PRS;|=D]), we think of L;, the liability of individual j, as being the sum of
two approximately normally distributed factors, their PRS, PRS;, and all their
remaining (residual) liability, R;.

L; = PRS; + R; (105)

where PRS; is approximately normally distributed with mean 0 and variance
Vprs, and the residual liability R; is also approximately normally distributed
with mean 0 and variance Vg = 1 — Vpgrg. Therefore, the mean PRS of diseased
individual j with residual liability R; = x is the expectation of a truncated normal
(the PRS distribution) with mean x and variance Vpgs. Thus for a disease with
prevalence ¢ and corresponding threshold ¢,

E[PRS;|D] = E[E[PRS;|D,R; = x]] (106)
= [T x0T 9(t:,\/Virs) )
_ /JC—_oo(’)(x’O'm)(l—Cb(t;x,\/Wm) dx. (107)

To find the difference in average PRS between cases and controls note that

$E[PRS;|D] + (1 — $)E[PRSj|~D] = E[PRS;] =0 (108)
E[prs;-p] — —YEPRS/IDI (109)

] 1— ¢

E[PRS;| D]
E[PRS;|D] ~ E[PRS;|-D] = —5 7= (110)

Figure 4 plots the difference between case/control PRS means as a function of
Vprs for a disease with threshold t = 2. The difference in mean PRSs between
cases and controls is a function of the variance due to the PRS, which is a
function of allele frequency. Increasing minor allele frequency increases the
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variance due to the PRS, and therefore increases the mean difference in the
PRS between cases and controls. Populations with differing allele frequencies
will therefore have varying differences in PRS mean.

2.0
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E[PRS|Case]-E[PRS|Control]
=
o
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0.0

0.0 01 02 03
Vprs
Figure 4 For a disease with threshold 2, ¥ ~ 0.02275, the difference in PRS mean

between cases and controls is given as a function of the proportion of the variance
due to the PRS, Vpgs.

Another approach to evaluating PRS predictive power builds its framework in a
machine learning / classification tradition. Here the goal is to find a rule based
on the PRS that is used to classify individuals - predict their case/control status
from their PRS. In this context the simplest classifier C predicts individual j to
be a case if PRS; > C and otherwise predicts j to be a control. For any given
value of C we can find the sensitivity, i.e., the “true positive rate" (TPR), the
fraction of individuals who are classified as a case and are actually a case, as
well as the specificity, i.e., “true negative rate" (TNR), the fraction of individuals
j classified as a control who are actually controls.
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An arbitrarily large number of classifiers are possible by setting differing values
of C, where any given C implies some specific TPR/TNR combination. The
overall utility of this classifier is traditionally presented as a receiver operator
characteristic curve (ROC), where 1 — TNR, also known as the “false positive
rate,” is given on the x axis and the sensitivity on the y. Figure 5 presents
the ROC for various value of Vprs found in typical (0.01 < Vprs < 0.1) biobank
scale studies of a common complex disease with prevalence a little over 2
percent. Also given is the best possible ROC for that same disease assuming
80% heritability. As is clear, with current study sizes, a classifier based on PRS
can achieve a very low false positive rate, almost all individuals classified as
cases can be likely cases, by setting a very high threshold on the PRS scale
(the top percentile, say), but such a classifier will miss nearly all true cases
(poor sensitivity), even for a PRS that explains as much as 10 percent of the
total variance. With perfect knowledge of the genetic basis of a trait with 80%
heritability, a genetic classifier is still unlikely to be any more useful than a very
good “screening tool,” i.e., while it will be possible to identify 95% of individuals
likely to develop disease, such a classifier will have a false positive rate of
approximately 8%, a value similar to or slightly better than the best prenatal
screening tools for Down Syndrome [48].
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Figure 5 For a disease with true prevalence ¢ ~ 0.02275, the receiver operator
characteristic (ROC) is created by classifying samples with a threshold on the PRS.
Samples above the PRS threshold are predicted to be cases. Any such classifier’s
utility is determined by the Vpgs.

2.6 The infinitesimal model and its critiques

It has long been suggested [49] that the field of theoretical population genetics
developed largely in the absence of any data sufficient to settle many of the
key questions the field wished to understand. Perhaps the most basic question
considered by the field is “What is the nature of genetic variation contributing
to complex traits?” Theory and analysis surrounding this question reached a
highly developed state long before there was anything like sufficient data to test
most of the key assumptions introduced by that theory. Now that genetic data
and estimates of genetic effects on phenotype are widely available, there is,
perhaps less direct appeal to theory developed in the absence of this data than
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there might be. In this particular case, though, somewhat obscure theoretical
results can help build our intuition.

In the human genetics community, the start of the GWAS era was
accompanied by what was frequently called the “Common Disease, Common
Variant Hypothesis” [50, 51]. Advocates and critiques of this hypothesis were,
perhaps often unknowingly, echoing debates that had occurred more than a
decade earlier in the theoretical quantitative genetics community. Theoretical
quantitative geneticists advocating a view most similar to the Common
Disease, Common Variant position were sometimes called “neo-Darwinians”
[52]. Those arguing an opposing view were sometimes called supporters of
the “infinitesimal” model. While the infinitesimal model has its origins with
Fisher [53], the first presentation detailing the connections between individual
locus population genetics forces (mutation, selection, and drift) with
phenotypic level quantitative genetics measures (variance components,
heritability etc.) is due to Lande [54]. In Lande's development of the
infinitesimal model, complex traits result from mutation/selection balance
under stabilizing selection. The variants that contribute to traits are a
combination of alleles of potentially large effect, but with very low frequency,
combined with many common alleles with much smaller individual effects.
The neo-Darwinians, often spearheaded by Turelli [55], argued that a
substantial fraction of genetic variation was likely contributed by
high-frequency alleles of large effect, whose frequency was maintained
through balancing selection [56]. At the time these debates were most
prominent, there was very little direct evidence to support either view.
However, the neo-Darwinians developed several interrelated analyses of the
infinitesimal model that they believed diminished the likelihood this view was
correct. First, the neo-Darwinians used data from experimental breeding
studies, in particular mutation accumulation studies, to argue that if the
infinitesimal model was correct it requires that the distribution of allelic
effects be highly leptokurtic, i.e., that a substantial fraction of the total genetic
variance must be contributed by extremely rare alleles of very large effect. A
corollary to this analysis showed most traits must be influenced by very many
genes, hundreds or thousands generally [56]. The neo-Darwinian school
argued that the only alternative to believing in this worldview was to suppose
that a substantial fraction of the variation in complex traits was contributed to
by common alleles of large effect, maintained by some form of balancing
selection.
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Over 20 years of GWAS has convinced nearly everyone in the human genetics
community that common alleles of individually large effect generally explain
little of the variance for most phenotypes studied, be they traits such as height
[57], or common disease phenotypes [26]. This is not to say they never exist
(e.g. APOE4 discussed above), but that such examples are very rare. The neo-
Darwinian prediction that a significant fraction of the variance in most complex
traits would be contributed by a few common alleles of very large effect is
usually wrong. The natural conclusion, therefore, is that the infinitesimal
model is likely largely correct. Nevertheless, if we are to accept this model, the
critiques leveled by the neo-Darwinians are no less cogent. If we accept that
there are almost no very common alleles of very large effect, then we must
believe most complex disease is contributed to by very many loci and that a
substantial fraction of the variation is contributed by rare alleles of large effect,
likely scattered throughout many loci across the genome.

Placing these intuitions in the modeling context here, we believe that alleles
that substantially increase liability for disease will more often than not be the
less frequent allele because in this context, as disease per se can be a factor
contributing to the stabilizing selection central to the infinitesimal model [54].
In fact, under a wide range of mutational models and effective population sizes,
it may be fundamentally impossible to distinguish the effects of stabilizing
selection from simple purifying selection on individual alleles [58].

2.6.1 Case-Control study design accentuates the bias in the sign of B

As we have notated our analysis, the theory above suggests that if a locus
contributes to liability to disease, we expect the A; to be associated with
increasing disease liability more often than the A allele. Thus, the general
theory suggests that we expect «; > 0 more often than we expect &y > 0.
Moreover, the general theory argues that if a; > 0 then we expect that g < 0.5,
i.e., the alleles with very large effects on liability likely have very small allele
frequencies. Put most succinctly, for disease alleles of large effect, g is likely
to be small and B = a7 — ag positive. While, this is our general intuition, if the
actual SNPs used to construct the PRS were discovered in a typical case-control
design this generalized bias in the sign g can be amplified hundreds of fold.

A typical case-control design for the training study might have close to equal
numbers of cases and controls, even for a disorder that is uncommon in the
general population. If the frequency of cases in the training study is in excess
of its population prevalence, then for the same B2 there is greater power to
identify a variant when g > 0. The larger the g and the rarer the disorder
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the greater the bias. This is easily understood from a simple comparison of
the power to detect a variant. The power of any study to detect a significant
SNP effect will be proportional to the variance explained by the SNP on the
phenotype in the study. If the training study is designed by sampling individuals
at random from the population independent of their phenotype, the power
to associate a variant with phenotype is proportional to 2pgp* and therefore
symmetric with respect to the sign of . However, if the design samples a
disproportionately large number of cases relative to population prevalence, it
has oversampled individuals with positive liability, and therefore oversampled
alleles with positive a's. This oversampling is greater when g is positive. To
understand why, recall that

b= m—up (115)

pao+qur = 0O, (116)
lal _ Py (117)
|| q

because p > g. Thus, the allelic effect, a;, of the rare allele necessarily differs
from the population mean more than the effect of the common allele, ay.
When g > 0 is positive, individuals with the rare allele are closer to the
threshold than individuals with the common allele would be were g < 0. For
the same value of |B|, the penetrance of a rare risk allele is greater than the
penetrance would be for common allele with the opposite sign . As a result
the difference in allele frequency between cases and controls will be larger
when the rare allele increases the risk of disease. Noting that the power for
any case-control study with an equal number of cases and controls is
proportional to (Pr[Ag|Case]Pr[A|Control] — Pr[A;|Case|Pr[Ag|Control])?, for a
common disease with ¢ = 0.05, the power to find a large effect, ﬁz =1, rare
allele, g < 0.05, is more than 15 fold greater when g = 1 than when g = —1.
For a rare disorder, ¢ = 0.001, sites with B = 1 are over 125 times more likely to
be discovered than sites with g = —1. This bias to discover positive f sites is
true regardless of the magnitude of B, but for sites with modest effect,
|B] = 0.1, the power differential is less than a factor of 2 for both common (1.3)
and rare disorders (1.7).

Thus, the Neo-Darwinian criticism of the infinitesimal model argues that many
of the alleles contributing to any phenotype will have large |g|, and small g,
and there is likely to be a bias towards positive p whenever disease itself is a
selective factor affecting allele frequency. Regardless of the general bias, a
case-control design for a training study will be 10's or even 100’s of times better
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powered to discover sites of large effect when g is positive. Even weak B's
should be slightly more commonly discovered in case-control studies when
is positive. There is relatively strong empirical evidence suggesting discovered
B's are generally positive [59, 60]. However, evaluation of empirical evidence is
complicated by LD in a manner discussed in some detail below. Nonetheless,
we have arrived at the first intuition encapsulated in the toy example. On
average we expect there to be correlation between the sign of g and allele
frequencies. In the toy example all variants had the exact same sign, which
is why we refer to this as a toy example. In real data the correlation will be
more subtle, but over many variants and most diseases we expect there to be
a meaningful correlation between B and g, with larger positive g associated
with smaller q. We expect this bias to be particularly pronounced when the
training study samples cases more frequently than population prevalence.

2.7 A population created by a bottleneck

For over 100 years population geneticists have conceptualized a population as
a self-contained entity, where one generation promulgates the next via
binomial sampling of alleles, a process they generally call Fisher-Wright
sampling. Population geneticists generally call alleles “neutral” when their
probability of being sampled is independent of their identity and call the
change in allele frequency from one generation to the next “genetic drift.”
Importantly, the expected frequency of any neutral allele after sampling is the
same as its frequency before sampling. Under drift alone, the frequency of a
neutral allele is a martingale; a random variable whose expectation the next
time it is observed is exactly equal to its current value.

Since the earliest days of fly genetics it was noticed that when a population of
flies were kept in a large flask, and then a small number of flies were chosen
at random, often by collecting whichever flies happened to move from one
flask to the other via the flasks’ “bottleneck,” the frequency of alleles among
flies that traveled through the bottleneck were often different. In general,
alleles present in the first flask, the “source” bottle, are frequently absent from
the second flask, the “destination” bottle. On the other hand, alleles that had
been rare in the source bottle are, sometimes, seen in the destination bottle
at frequencies much higher than in the source. This phenomenon has long
been noted in human disease studies where the fact that many rare, high
penetrance, disease alleles were discovered precisely because they were at
unusually high frequency in a relatively isolated population [61, 62, 63].
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A pair of extant populations may have historically had a source and destination
relationship. When this relationship exists we will refer to the extant population
which had been the source as the “historical-source” population, and other as
the “historical-destination” population. Perhaps counterintuitively, the reason
disease alleles are often at unusually high frequency in historical-destination
populations is because allele frequency is a martingale unless acted on by
strong natural selection. When a destination population was created, the
expected frequency of all alleles in the destination population was same as
their frequency in the source. However, if the destination population was
created by sampling only a relatively small number of individuals from the
source population, there is a substantial probability that any rare allele in the
source population might not have been sampled and therefore been absent
from the destination population, i.e., during a founding event, alleles are
lost and are at frequency zero in the destination population. If we think N
individuals are sampled from the source population to create the destination
population then, for an allele A; with frequency g in the source population,
the probability, w, that A, is entirely absent from the destination population at
the time of founding is the probability that its frequency, g/, in the destination
population is zero.

w = Pr[gr=0] (118)
= (1—q)*V. (119)

The two in front of N derives from diploidy. Obviously, the smaller the number
of individuals creating the destination population, N¢, the greater the chance
an allele is lost. Similarly, the smaller the initial frequency, g, of an allele, the
greater the chance it is lost. For any sufficiently rare allele and small bottleneck
size, there will be a substantial probability the allele is lost because of the
bottleneck.

Nevertheless, allele frequencies are a martingale. Therefore, E[g/] = 4. In the
destination population, either the A; allele will have been lost, in which case its
frequency became 0, or it will have been present, in which case its frequency
was greater than 0. From the law of total conditional expectation

E[g/] = Prl[g’ = 0]E[g/|g/ = 0] + (1 — Pr[g’ = 0])E[g/|gq/ > 0] (120)

= wx0+(1—-w)E[glg > 0] =q. (121)

Elg/lgr > 0] = ﬁ (122)
- 1 - q. (123)

1—(1—q)*Nr
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Therefore alleles that are not lost during the population founding event will
have higher average frequency in the destination population than they had
in the source population. The rarer the allele and the smaller the number of
founders, the greater their frequency will increase, on average, conditional
on the allele making it through the bottleneck. Heuristically, we can think of
this as a lottery for rare alleles. During the founding event, many rare alleles
are losers and will be lost. However, if an allele happens to win, then its allele
frequency will likely be higher than it was before.

Thus, at the moment of founding the expected frequency of rare alleles
present in the destination population is higher than their frequency was in the
source. After this moment of founding, the expected frequency of the alleles
in both populations remains a martingale. Thus, at any time after the
founding, the expected frequency of an allele present in both populations is
higher in the historical-destination population than the historical-source.
Of course, the actual frequency in both historical-source and
historical-destination populations will drift over time. Nevertheless the
average frequency remains higher in the historical-destination population.

That alleles are often at usually high frequency “by chance” in small isolated
populations, historical-destinations, has been understood for nearly a century,
and generally referred to as a “founder effect” in human genetics. While
this phenomenon is widely known, it is, we believe, largely thought of as an
isolated “random” effect. That belief starts with the true statement “whenever a
bottleneck happens, allele frequencies change, and it is random whether or not
the frequency increases or decreases," but fails to recognize that conditional
on the allele being present in the historical-destination population, it is more
likely to have increased in frequency during the bottleneck than it is to have
decreased. Thus, conditional on an allele being observable in the historical-
destination population, there is a systematic directionality to its frequency
that originated during the founding; bottlenecks increase the frequency (on
average) of alleles that survive the event, and this expected frequency in the
current historical-destination is whatever it was during the founding. While this
analysis contemplates a single founding event, the general logic and framework
holds for any subsequent migration between the populations. A rare allele
found in only one population before migration will increase in frequency in its
new population when it migrates from the larger population to the smaller,
and decrease in frequency migrating from the smaller to larger population.

This analysis is precisely correct for neutral alleles and approximates a
transient analysis for selected alleles. If we imagine the frequency of the rarer
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disease allele is being tightly regulated by natural selection in the source
population, perhaps because it is under very strong selection and therefore in
mutation-selection balance (very large s [64]), then this difference in allele
frequency caused by the founding will be present immediately after the
bottleneck, but will presumably diminish over time from the effects of
selection. In the presence of selection, allele frequency is not a martingale,
and no matter how the frequency changed in the destination population, over
time sufficiently strong selection will determine the allele frequency in the
historical-destination population likely making it more similar to the
historical-source if selection acts similarly in both. Under strong selection,
the difference in allele frequency between historical-source and
historical-destination populations will be on average larger the shorter the
time since founding. On the other hand, if selection is weaker, allele frequency
will fundamentally be a function of Ns (selection and population size) and the
effect of selection on allele frequency will be “relaxed” in the smaller
population (but see [65, 58] showing that under many circumstance the
dependence on N is often minor). Thus, for “weakly” selected alleles, as long
as the effective population size is smaller in the historical-destination
population, allele frequency will likely be higher, on average.

Combining this result with the intuition we developed from the infinitesimal
model, particularly when variants are ascertained in a case-control framework,
we find that we expect the rarer allele, A;, to increase liability for disease
more often than the common allele, A, does, i.e., we expect p > 0 more often
than g < 0. We expect the larger the effect on disease the lower the allele
frequency, on average (B and g are inversely proportional). We think that
when we compare two populations, allele frequencies may differ. If one of the
populations is something akin to the historical-source population of the other,
we expect many rare disease alleles present in the historical-source
population will be absent from the historical-destination population. However,
when the disease alleles are present in the historical-destination population,
they will be on average at higher frequency than they are in the
historical-source population. The careful reader will recognize that we have
now described a mechanistic insight for the second major correlation
assumed in our toy numerical example. If one population is closer to the
historical-source and the other the historical-destination, we will expect there
to be systematic differences in allele frequency between them. In our toy
example, the training population is analogous to the historical-destination
population and the test population to the historical-source. In real data,
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it will never be that all the variants are at higher frequency in the
historical-destination than the historical-source, but on average they should
be higher. Thus, we have reached the intuition behind the two fundamental
correlations demonstrated in the toy example: positive correlation in the sign
of B across sites, and positive correlation in allele frequency across loci. While
the toy example was intended to be an extreme example of this, we expect
the pattern to be general. Allele frequency differences per se ought to
contribute to systematic and predictable differences in PRS.

2.8 Allele frequencies differ between studies

With these intuitions in mind, we can now predict what we expect to happen
when we train a PRS in individuals from one population but test it in individuals
from another. We expect allele frequencies to vary between populations. Thus,
even if the allele effect sizes measured as g are the same between populations,
the differing allele frequencies will cause each locus to contribute slightly
different amounts of additive variance to the trait, have slightly different OR’s
etc. Absent any other information, we might imagine that the various allele
frequency differences across many loci would “cancel” out, and important
averages might be approximately the same. However, if one population is the
historical-source population, and other population its historical-destination,
there will be consistent and predictable effects on PRSs.

Begin by imagining training a PRS in a historical-destination population and
testing it in the historical-source population, and assume in both studies no
correction was made for allele frequency. Assume that all alleles included in the
PRS are truly disease influencing, have their effects accurately estimated as B's,
and all B's are the same in both the historical-source and historical-destination
population. Of course, if an allele is present in both the historical-source
and historical-destination population we imagine the reason will often be
because the allele was originally in the historical-source population, and was
introduced into the historical-destination population at the time of founding,
rather than being the result of multiple different mutational events to the same
allele, or introduced from one population into the other by migration after
the founding event. This assumption is fundamentally equivalent to assuming
that the population founding is relatively recent relative to 4N, generations,
where N, is the effective population size of the historical-source population.
For humans with effective population sizes somewhere between 10,000 and
100,000 and a generation time of at least 15 years, this is equivalent to assuming
the founding events happened less than, say, 150,000 - 1,500,000 years ago,
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which is a near certainty. Therefore, when an allele is present in both historical-
source and historical-destination populations, we suspect those alleles were
present in the historical-source population at the time of the founding event,
survived the bottleneck, and will have, on average, higher frequency in the
historical-destination population than in the historical-source population. This
will not always be true, but we imagine it is true more often than not. In
this scenario, on average we expect g in the training study (the historical-
destination population) to be on average larger than in the test study. These
are the conditions of the toy numerical example. If no correction has been
made for allele frequency the PRS will have mean

n
E[PRS] =2Y g.B.. (124)
v=1

Because we expect disease alleles to have positive f on average, see
Section 2.6, increasing allele frequency g implies an increasing mean PRS.
Thus, with no allele frequency correction, we expect the mean PRS to be larger
in the training set (historical-destination population) than in the test set
(historical-source population). If the disease is being contributed to by
sufficiently rare alleles or the bottleneck included sufficiently few people, the
means of the PRS could be so far apart that the two PRS distributions do not
overlap (our numerical example). Not only will the means of the two PRS
distributions differ, but the additive variance accounted for by the PRS will
also differ between the two studies,

n

Vprs =2 ) Pulfofs, (125)

v=1

and we see the variance accounted for by the PRS will be higher in the training
(historical-destination) population than in the test (founding, historical-source)
population. Recalling that if we measure the effectiveness / utility / goodness
of the PRS by the squared correlation between PRS and known phenotype, the
training population will have higher squared correlation because it has a larger
Vprs. Similarly if we measure effectiveness as something like the difference
between case / control PRS means, this too is an increasing function of Vpgs.
In short, if we train a PRS in a historical-destination population and then test it
in the historical-source population we will conclude the PRS “works better” in
the training population than it does in the test population even if all genetic
effects are identical. Moreover, the means of the PRS distribution will be lower
in the test set, with the two PRS distributions potentially showing no overlap.
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Taken together these two observations could easily lead to the conclusion that
the PRS “does not work well” in the test population.

Conversely, if we train the PRS in the historical-source population and test
it in the historical-destination population, we might reasonably expect that
some of the disease alleles present in the historical-source population will be
absent from the test population. The effect of this will be discussed in detail
below. However, as a thought experiment let us assume that all disease alleles
used for training also happen to be in the test population, perhaps by chance,
or perhaps because alleles absent from the test set were not included in the
training set due to the fact that the reagent used for genotyping (a genotyping
chip, say) in the training population only included SNPs known to be present
in many populations. In this circumstance we would see the opposite result.
The PRS would appear to have higher mean in the test population than in the
training population, and the correlation between PRS and phenotype would be
larger in the test population. We might appear to have the paradoxical result
that a PRS trained in one population works better in a different population.
If the sample sizes were vastly different in the training and test studies, one
might be tempted to hypothesize that the PRS working “better” in the test study
had something to do with the precision of the g estimates, but here we see the
phenomena is entirely consistent with simply training in an historical-source
population and testing in a historical-destination one.

2.9 An allele present in one study is absent from another

We expect many rare alleles present in the historical-source population to be
lost in the bottleneck and therefore absent from the historical-destination
population. On the other hand, we also expect there to be some recently
arisen alleles, post-bottleneck alleles, that are only in one of the two
populations because they have only recently come into existence,
and there has been insufficient migration between the founding and
historical-destination populations post-bottleneck for the allele to be found in
both places. Thus, we can think of alleles present in one population but
absent from the other as belonging to two classes. The first class are relatively
older alleles that existed before the founding and by chance were lost in the
historical-destination population. These are alleles that could only contribute
to disease in the historical-source population. The second class are relatively
younger alleles that have arisen after the bottleneck in only one of
the two populations, and could be found in either the founding or
historical-destination populations. Assuming the founding event is relatively
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recent compared to population size, we might reasonably expect the first
class to considerably out number the second.

If we train our PRS in the historical-destination population, alleles contributing
to disease in the historical-destination population but absent from the
historical-source population - class 2 alleles found only in the
historical-destination population - will exacerbate the trends described above.
These are alleles contributing additive variance in the training set but with
g = 0in the test set. They will decrease the mean PRS in the test set, and
decrease the correlation between PRS and phenotype. These alleles make a
bad situation worse, if you think of lower correlation between PRS and
phenotype as a sign the PRS is worse.

If we train our PRS in the historical-source population, all class 1 alleles and
class 2 alleles found only the historical-source population will work to reverse
the effects of alleles present in both populations. These alleles have g > 0 in
the training population, but g4 = 0 in the test population, and therefore increase
the mean PRS in the training population relative to the test, and contribute
to Vprs only in the training population, and therefore increase the correlation
between PRS and phenotype only in the training group. Depending on how
many of these alleles exist in the training set, we can imagine the mean PRS of
the training population being higher, lower, or even approximately equal to
the test population. Similarly we can imagine the correlation between PRS and
phenotype could be higher, lower, or equal.

Thus, if we train a PRS in a historical-destination population and test it in a the
historical-source population we expect the mean of the PRS to be lower in the
test population, as will the correlation between PRS and phenotype. On the
other hand, if we train in the historical-source population and test in the
historical-destination any result is possible. The PRS means and correlation
between PRS and phenotype might be higher, lower or equal in the
two populations. What is certain, though, is that training in the
historical-destination  population and testing in the founding
(historical-source) population will generally make the differences between the
two populations appear to be larger than training in the founding and testing
in the historical-destination. This is because class 1 alleles (those lost during
the founding event) act in the opposite direction as alleles present in both
populations.
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2.10 Differing LD between studies

Linkage disequilibrium (LD), the non-random association between alleles at
different loci, often reinforces this general pattern, but in some circumstances
can reverse it. In general, LD between sites causes correlation in effect sizes.
Call B, and B, the difference in allelic effects at sites v and w in some real
population under study with linkage disequilibrium D # 0 between these sites.
Imagine another population, identical in every way to the first, but where
sites v and w are not in LD (D = 0), and call 8, and B, the effect sizes in this
imaginary population without LD. As shown in the first paper in this series

- D[fw
v = PBo+ . 126
p p Doty (126)
- DB,
w = Bw+ , 127
p p e (127)

where p,, 4v, Pw, g are the allele frequencies at sites v and w. In a Falconer
inspired derivation of these results we would call 8, and B, the “true” effect
sizes, and B, and B, the “estimated” effects in the presence of LD. We also
show that the standard measure of LD, D, can be derived as a “haplotypic”
covariance, and as a result the LD measure 2 is, in fact, a squared correlation
coefficient, so 0 < r?> < 1 The immediate implication of this is that

2 D?
r- = ——<1 (128)
PodoPwqw
ID| < /PooPulw- (129)

We note that the equality, D = \/puqoPww = Pods, €an only hold when g, = g,
and the alleles are in “perfect LD.” If the minor allele frequencies differ between
the two loci, then necessarily > < 1. If g, > gy, say, then —g,q, < D < poge.

In what is likely a common scenario, consider a situation where SNP w has an
effect on phenotype independent of LD, B, # 0, but SNP v does not, 8, = 0.
Further assume g, > g4, and site v is included in the construction of a PRS,
but site w is not, possibly because site v is included on some widely available
genotyping array, and site w is not. In a Falconer construction, we would
say site w is the “real” effect site, but site v is an “LD surrogate” included in
the PRS. For simplicity assume that there are no other sites in LD with v and
w with any LD-independent effects. Thus, if we had included site w in the
PRS, and everything were perfectly estimated 8, = B,. However, g, = ’;v—ij.
To understand how this influences PRSs, we must consider two situations,
corresponding to positive and negative D between these sites. It is certainly
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possible to enumerate all four haplotypes, and move through the possible
allelic configurations methodically, but an intuitive approach is probably more
helpful. Recalling that D can be written as a covariance, if haplotypes containing
the rare allele at both loci, A,, A, 0ccur more often than expected by chance
given their individual allele frequencies, g.,4,, then D will be positive, because
the covariance between allelic states is positive. If such haplotypes occur
no more often than expected by chance, D = 0. If such haplotypes are less
common than expected by chance D < 0. Put most simply, if there is positive
correlation between allelic states, D is positive. If negative correlation, D is
negative.

The immediate implication is that when D is positive, the sign of B, will be
the same as B,. When D is negative the signs flip. If we subscribe to an
“infinitesimal” model of complex phenotypes, we expect when |B,| is large, By
will generally be positive and g, small. However, if we include site v in the PRS
not w, the sign of B, depends on the sign of D, and the general patterns we
describe above hold if and only if haplotypes containing both rare alleles are
found more often than expected by chance. Otherwise, 8, will more often than
not have a negative sign, and all the described relationships reverse. Whether
one expects the sign of D to be positive or negative is a complex question
involving details of the coalescent tree in this region, and requires a somewhat
detailed understanding of population sizes and how they change over time and
related features of the demographic ancestry of these individuals. Importantly,
when populations differ significantly in LD, the sign of D between the v and
w could be opposite, resulting in the sign of g, appearing to flip between
populations [66]. There may be no easy rule of thumb here. The situation
becomes even more complex when there are multiple sites with effects all of
which are in LD with v, but also not included in the PRS. Multiple sites in LD
will be explored more broadly in the third paper in this series.

Despite the sign of D being somewhat challenging to estimate as a general rule,
several effects of including site v in the PRS rather than site w are immediately
clear. First, unless g, = g, and the two sites are in perfect LD, then |B,| < |Buw|
because % < 1. Including the “wrong” site in the PRS has the effect of making
the effect size, B closer to zero. Similarly the additive variance due to locus v
will be smaller than locus w, 2p,q,(Bs)?* < prqw(ﬁvﬁ(%). This simple fact
may have significant implications for understanding “missing” heritability.

Returning to the question of training a PRS in individuals from one population,
but testing in a different population, we find including the “wrong” site to
have effects that often accentuate the previously described patterns. On
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average, a bottleneck has no effects on LD; haplotype frequencies do not
change, on average. However, if two sites have significant LD between them in
the historical-source population, then necessarily “recombinant” haplotypes
(haplotypes created only by recombination between the sites) are far more rare
in the historical-source population than either of the minor alleles themselves.
Being the most rare haplotype, the chance that recombinant haplotypes are
completely lost during the bottleneck is greater than any other haplotype.
Thus, for sufficiently small bottleneck sizes, it will not be uncommon for all
recombinant haplotypes to be lost during the bottleneck, and LD to increase.
Of course, conditional on the recombinant haplotypes surviving the bottleneck,
LD will decline, but as a rule of thumb (which we will see in data below), LD will
generally be greater in the historical-destination than in the historical-source
population.

Larger LD in the historical-destination population implies that |B|'s at site v
(the site included in the PRS) will be larger in the historical-destination
population, as will the additive variance at site v independent of any allele
frequency differences. A PRS trained in the historical-destination population
should have a higher mean PRS, and better correlation between PRS and
phenotype, from LD alone, reinforcing all the patterns seen from changing
allele frequency described above (Section 2.8). A PRS trained in the
historical-source population will have lower mean PRS than in the
historical-destination and lower correlation between PRS and phenotype due
to LD, unless site w is absent from the historical-destination population, in
which case the patterns described in Section 2.9 hold. Of course, LD
attenuates all this by a factor of % Thus, as a basic rule, including sites “only
in LD" with the “real” effect sites will often reinforce the differences in the PRS
between founding and historical-destination populations similarly to the
changes due to allele frequency alone, However, if the sign of D is negative,
opposite patterns can be found.

3. Results and Discussion

While there is perhaps no complete consensus on the details [67, 68, 69, 70,
71,72, 73], there is at this point virtually no doubt that the vast majority of
human ancestors lived in Africa for much of Hominini history, and in some
very real sense all extant populations are ultimately descended from ancient
African ones. Without doubt there has been a complex pattern of migration,
selection, population loss and re-establishments over human history, but in
some real sense all humans trace their ancestry back to Africa. Therefore, in the
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context we will be considering here, it is not entirely unreasonable to think of
studies involving people of recent African ancestry as reflecting the historical-
source population, and those with recent ancestry primarily outside Africa as
largely reflecting historical-destination populations. Similarly we think of those
with recent Finnish or Greenland ancestry as reflecting a historical-destination
populations from the broader historical-source European peoples, etc. In all
likelihood, individuals identified as Latino may often have a complex ancestry
involving relatively recent ancestors from Europe, Africa and the Americas,
and thus reflect aspects of both historical-source and historical-destination
population history.

The systematic effects of bottlenecks on rare allele frequency is relatively easy
to observe. Making the likely assumption that the Finnish (FIN) population
[74] was created by a founding event from the non-Finnish European (NFE)
population, we would predict that many rare alleles in the NFE sample might
be absent from FIN, but conditional on a rare allele being observed in the
FIN sample, it will on average be more common than in NFE. Restricting our
attention to alleles on chromosome 1 at frequency less than 0.001 overall in
humans in gnomADv4 [75] genomes (i.e., allele frequency < 0.001), we observe
21,332,691 rare sites found in NFE but not FIN, and thirty times fewer sites,
786,084 found in FIN but not NFE. On the other hand, of the 967,157 rare
alleles found in both populations, over 70%, 683,172, are at higher frequency
in FIN than in NFE. There results are complicated by the fact that far more
NFE samples have been sequenced with high coverage in NFE than in FIN. To
account for this, we perform one-sided Fisher’s exact tests on all rare alleles
observed in both populations, using the observed sample sizes in NFE and FIN.
We perform the tests twice. In one, we test the hypothesis that NFE < FIN. In
the other we test the reverse, FIN < NFE. Low p-values (close to 0) indicate that
the hypothesis has been rejected, meaning that FIN > NFE, when testing the
hypothesis that NFE < FIN.

Figure 6 clearly shows that rare alleles are not at the same frequency in the
populations. There are highly statistically significant differences in frequency
at many sites, but conditional on the difference being statistically significant
at p < 107°, 98.8% of the time FIN has a higher frequency than NFE (103,091
vs 1,226 sites. On the other hand, comparing EAS (East Asian ancestry) to SAS
(South Asian ancestry), two groups relatively unlikely to have an historical-
source / historical-destination relationship, finds nearly identical numbers of
unique rare alleles (4.2 million vs. 4.3 million) and a nearly equal number of
variants at higher frequency in each group (2.92 million vs 2.98 million), given
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they are in observed in both. There are more sites at significantly p < 107
higher frequency in EAS than in SAS, but the difference is far less pronounced
(65,978 vs 23,018 sites). Similarly comparing NFE to the Amish population (AMI)
we find nearly 1,000 times more rare alleles in the NFE (over 22 million vs 25
thousand), but given that a rare allele is in both populations, it is at higher
frequency in AMI over 95% of the time (92,547 vs 1,545). Direct comparisons
using gnomAD between NFE and AFR, which is a mixture of African Americans
and those of more recent African ancestry, is less straightforward because of
the differences in sample size and the often complex ancestry (admixture) of
the AFR sample.

IS

Observed (-log,, p-value)
Observed (-log;, p-value)

nfe<fin o eas<sas *
fin < nfe sas < eas

T T T T T T T T T
1 2 3 ) 5 1 2 3 4 5
Expected (-log;, p-value) Expected (~log,o p-value)

NFE vs FIN EAS vs SAS

Figure 6 QQ plot testing the equality of minor allele frequency in FIN and NFE for rare
SNPs with overall frequency less than 0.001. On the left, in blue and labeled nfe < fin
are tests of the hypothesis that the frequency in NFE < FIN. Here a highly significant
p-value implies rejection of this hypothesis because the frequency in FIN is greater
than NFE. The opposite hypothesis is given in orange, and highly significant results
show greater frequency in NFE. There are approximately 100 times as many SNPs at
p < 10~ significantly higher frequency in FIN than in NFE. On the other hand there
are only 3 times as many p < 10~° significantly higher frequency in EAS than in SAS

While we think the effects of bottlenecks will be most pronounced in rare
alleles, patterns of LD are usually presented and discussed primarily with
reference to common alleles where the effects described above should be
much less pronounced. Nevertheless, the expected pattern - LD is less in AFR
than in NFE, and NFE tends to show less LD than more recently descended
populations - is extremely well established even restricting attention only
to relatively common sites [76, 77, 78, 79]. As a simple anecdotal example
Figure 7 presents LD [80, 81] patterns for sites with minor allele frequency
g > 0.1 (as reported in gnomADvV4) in the 150kb surrounding the ESPN locus, a
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region selected for no better reason than it is on chromosome 1 and shares an
abbreviation with a television sports network. In this single example we see
that AFR clearly shows less LD than either NFE or FIN and that the differences
between NFE and FIN are largely subtle. Patterns of rare allele frequency
differences between populations with recent ancestry relationships are, in
general, far more pronounced and predictable than LD differences among
common alleles.

S TS

S —— -
“ -
H—HHH ~H—HHH
~ ~
H ~4
AFR NFE FIN

Figure 7 The pairwise LD in the region surrounding ESPN on chromosome 1. Above
the diagonal in blue gives D’. Below the diagonal in red shows 2. AFR (left) clearly
shows less LD overall than either NFE (center) or FIN (right). NFE and FIN show very
similar patterns of LD, with some evidence that FIN may exhibit slightly more LD,
particularly as measured by D’, but the overall differences are slight, and somewhat
inconsistent.

3.1 Review of challenging observations

To understand the most challenging observations in PRS analysis, begin by
making the following broad-stroke assumptions about human demographic
history: African populations are historical-source to all; Latino individuals are a
likely mixture of historical-source and historical-destination populations; the
broader European population is historical-source relative to Ashkenazi and
Greenland populations. In general, rare alleles present in both training and
test studies cause training in historical-destination populations and testing in
historical-source to have lower PRS mean and variance in the test population
than in the training population. Training in the historical-source population and
testing in the historical-destination leads to more complex relationships driven
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by the relative contributions of rare alleles present in both populations versus
rare alleles found only in the training population. “Cross-population” training
studies (training studies including individuals with diverse ancestries) can
benefit from larger sample sizes, but when used with SNP selection methods
that are LD aware [82], can also substantially eliminate the complications
described in Section 2.10. Cross-population training and SNP selection are also
less likely to chose variants for inclusion in the PRS that are absent from some
of the training ancestries. Thus, cross-population training is likely to result
in better testing performance [83, 44] by picking better SNPs: those whose
estimated effects are less influenced by LD and those less likely absent from
different populations. Keeping these broad patterns in mind, cross population
application of PRS seems predictable and understandable.

When PRSs for height trained in European-biased genetic studies are tested in
African samples, both the PRS mean and variance appear to be considerably
lower in Africans [5, 6]. Similarly, PRSs for schizophrenia trained in
European-biased genetic studies have decreased mean when tested in
Africans [5, 7]. PRSs derived from SNPs trained on European populations
appear to underestimate (lower PRS mean) the risk of cardiovascular disease
in African individuals [9]. Following a similar pattern, a PRS of only 11 SNPs in
Greenlanders (historical-destination) had a Vprs = 0.162 for LDL-cholesterol,
compared to 2 million variants needed to explain 22% of the variance in
LDL-cholesterol in Europeans (source) [14]. PRS models of acute lymphoblastic
leukemia [13] trained in non-Latino Whites (historical-destination) explained a
greater proportion of variance when tested in non-Latino Whites
(historical-destination) compared to when tested in Latinos (mixture of
historical-source and historical-destination). Conversely, a PRS for breast
cancer trained in the broader European population (source) and tested in
Ashkenazi Jewish women (historical-destination) demonstrated good
discrimination (an increasing function of Vpgs) but significant overestimation
of breast cancer risk (higher PRS mean) in the Ashkenazi Jewish [18]. These
are all exactly the expected observations when PRS includes a significant
contribution from rare alleles present in both populations and at higher
average frequency in the historical-destination population.

On the other hand, when PRSs for type II diabetes and asthma are trained in
multi-ethnic cohorts (historical-source and historical-destination mixture, but
a substantial fraction of historical-destination individuals), the PRS mean and
variance are both larger in African populations (historical-source) than any
other populations tested (historical-destination) [10, 5, 11]. A PRS for acute
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lymphoblastic leukemia [13] trained on multi-ancestry GWAS data
(historical-source and historical-destination, but historical-destination as the
largest contributor) explained equal proportions of variance when tested in
non-Latino Whites (historical-destination) and in Latinos (historical-source and
historical-destination), which was significantly more than the variance
explained by the PRS trained non-Latino Whites (historical-destination, only).
Because PRSs trained in historical-source populations can include rare alleles
not found in historical-destination populations, we interpret these results as
suggesting that both type II diabetes and asthma have significant
contributions from rare alleles only found in historical-source populations, as
does acute lymphoblastic leukemia, but to a lesser extent.

The observations of Somineni et al. [12] may appear perplexing at first, until
one notes that unlike most studies here effect sizes were measured on the
liability scale, and PRS mean was adjusted for allele frequency differences. Thus,
the differences in PRS between training and test populations were more subtle
than generally observed. Nevertheless, a PRS trained in African Americans
(source) yielded a higher odds ratio in the top percentile of polygenic risk
individuals when tested in African Americans (source) then when tested in
Europeans (historical-destination), suggesting the presence of African-specific
rare alleles whose effects are most prominent in the PRS tail. On the other
hand, a PRS trained in Europeans yielded only slightly higher odds ratios in
the PRS tails when tested in European vs African Americans, consistent with
the slightly higher Vprs in Europeans likely contributed to by alleles present in
both populations but at lower frequency in the historical-source population.

Wang et al. (2020) [20] found that linkage disequilibrium and minor allele
frequency differences between ancestries could be used to account for 70-80%
of the change in predictive power, a function of Vprs, of PRSs for body mass
index and type II diabetes trained in European populations and then tested in
both European and African populations. Because this study only included allele
frequency and LD measured in common alleles, it is not entirely surprising
that there may exist effects of rare alleles not completely accounted for by
common allele frequency and LD differences. On the other hand, with whole
genome sequencing in admixed individuals [21] using the observed allele
frequencies in the tested individuals directly, there was virtually no evidence
for any difference by ancestry in effect sizes measured as p's for any variant
(although confidence intervals were often substantial). While the original
authors suggest this result might reflect the presence of GxE interactions,
the simple minded interpretation is that when the effects of LD and allele
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frequency can be fully accounted for, genetic effects measured as p's are the
same in all humans. While the examples given here are without question
“cherry picked,” as it is nearly impossible not to cherry pick results from a
literature with 1000s of examples, it is challenging to find observations that
are entirely inconsistent with the patterns described here. We believe that a
simple parsimonious explanation of the PRS literature is that g's are very likely
to be generally consistent across human populations. Allele frequency and LD
can exhibit complex patterns that may vary considerably by ancestry.

3.2 Recommendations

Many of the challenges associated with PRS analysis are largely solved by
simply moving to the disease liability scale and being careful to account for
allele frequency differences, and consequently differences in PRS mean and
variance. For a quantitative disease phenotype (like blood pressure), estimate
at all SNPs in a linear regression, or linear mixed model, in whatever is thought
to be a best practice way. For a binary phenotype, estimate the odds ratio in
logistic regression or other best practice manner. For the binary phenotype
convert the OR's to penetrances, and then to their allelic effects, «'s, and the
difference in allelic effect, f. Thus, we have the “same” measure of effect
B on the quantitative phenotype scale for a quantitative disease, or on the
liability scale for binary disease. At this stage, one could thin SNPs in a typical
way, select sites with large p and remove others in LD with selected sites.
Alternatively, one could attempt to use the g estimates and LD regression
coefficient matrix to estimate B’s, i.e., the effect size in the absence of LD. This
sort of approach is fundamentally similar to [84] and related BLUP (best linear
unbiased predictor) estimators of individual variant effect sizes. One would
include any SNP with substantial 3, perhaps determined by 2pg3? being above
some threshold, or a similar choice criterion that is proportional to statistical
confidence that B # 0. Select all SNPs that meet this criterion, regardless of
the LD relationship between them, and use j for the SNP's effect, as this is
the measure of effect size independent of LD. From a technical standpoint this
procedure may be extremely challenging. Since many SNPs may have very
similar LD patterns with their neighbors, the LD regression matrix may be
singular and unable to be inverted. Even if technically invertible, the matrix
may be very “stiff,” highly sensitive to small perturbations and numerical round-
off error. This approach also assumes that higher order LD is insignificant
compared to pairwise LD. Finally, if alleles contributing to effect in an LD-
independent way are not genotyped in the training study, 8 = 0 for all SNPs
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actually typed, but there are untyped SNPs in LD with these causing || > 0,
this approach could lead to extremely challenging to interpret results, and
is unlikely to fully resolve the challenges LD induces in PRS analysis. The
availability of whole genome sequencing among individuals in the training
study combined with LD estimated directly from these subjects will certainly
help to alleviate these problems. There is much room for development of new,
robust estimation routines at this stage. Cross-population training studies
can assist in limiting the effects of LD. The greater the variation in LD among
the training individuals, the less stiff the LD matrix will be. Put more simply,
variation in LD always assists in fine-mapping variants [82].

Nevertheless, if we assume that the estimates are “reliable,” then the SNPs
selected and their estimated effect sizes in a training study are available to
be applied to any test study, regardless of allele frequency or LD differences,
under the simple assumption that f's are the same (one of the few measures
that could be the same between study populations). However, to do so and
avoid the complications and confusions associated with differing PRS means,
construction of the PRS score for individual j in the test population proceeds
naturally using the allele frequencies g, in the test population,

PRS; = ) Bu(So; — 240). (130)
v=1
E[PRS]] = 0. (131)
n ~
Var[PRS;] = Vprs = Y 2poqoP. (132)
v=1

Of course, PRS; is fundamentally an individual measure; it is a property of
person j. While we might abstractly think of person j as coming from a
particular population, for many people their recent ancestry is likely to be
complex, and there is no single value of g, that can be said to reflect their
“population.” On the other hand, for any individual with data available from
whole genome sequencing, or modern genotyping arrays, there exist several
robust methods to infer ancestry [85] that usually report measures that can
be viewed as an estimate of the proportion of individual j's ancestry that
comes from given reference populations. Using these estimates as weights
combined with reported allele frequencies from gnomAD [75], a “personalized”
estimate of g, can be used, g, that might be thought of as the allele
frequency among individual j's recent ancestors. In such a manner, with any
robust estimates of 3, a PRS can be constructed for individual j regardless of
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j's personal ancestry, that should have mean =~ 0, and be largely comparable
between any individuals ;.

Evaluation of a PRS should avoid comparing training to test studies as any
reasonable evaluation technique will be a function of Vpgs, which is in turn
a function of allele frequencies, and potentially personalized ancestry of the
individuals, and therefore not directly comparable if the training and test
studies include individuals with differing ancestries. Instead the performance
of the PRS in the test population should most naturally be compared to its
expectations assuming the j values are the same in all individuals. For a
quantitative phenotype with total variance Vp, the squared correlation, r?,
between the phenotype of individual j and PRS; is expected to be V{}—ﬁs Thus,
one could test whether 2 is bigger than zero (establishing that at least some of
the SNPs included in the PRS have effects similar to the training set), or more
quantitatively if #? is significantly different from V{}—ﬁs A failure to reject equality
implies there is no evidence for differing genetic effects between the training
and test studies.

For a binary phenotype, the quantity most interesting to the medical geneticist
is the probability an individual will ultimately develop disease as a function of
their PRS. If D; is an indicator that individual j will develop disease such that
D; = 1if the person ultimately develops disease and D; = 0 otherwise, then

Pr[Dj =1] = 1—®(tPRSj,1— Vpgs) (133)
— 1—c1><t_PRSf>. (134)

V1 —Vpgs
oR; = Pr[D; = 1](1 - ¢) (135)

(1 —Pr[D; = 1]),

where t is the disease threshold and & is a standard normal cumulative
distribution. If disease phenotype were known, one could calculate measures
such as ROCs for various PRS thresholds etc. Of course, as is obvious from the
above, the expectation for these measures is a function of Vprs which is a
function of allele frequency and ancestry, and thus not comparable between
studies. A natural evaluation technique might be to compare the mean PRS in
cases and in controls, or area under the curve (AUC) of the ROC, and ask if the
difference in means (AUC) is greater than zero (0.5) - establishing that at least
some of the p's are similar between training and test set, or more
guantitatively, if the difference in means (AUC) is consistent with Vpgs. Failure
to reject equality would argue there is no substantial evidence for a difference
in genetic basis of disease in the two studies under comparison.
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3.3 Application of PRS recommendations

To understand the effect of these recommendations we use training data from
[86] with allele frequency and effect size on Crohns Disease (CD) reported in
the GWAS Catalog [87]. The training study consisted primarily of European
ancestry individuals (86, 640) meta-analyzed with a much smaller number of
East Asian Individuals (9,846). As the test study we use data from [12] with
1,335 African Americans with CD and 1, 644 control African Americans. For each
individual in the test study, we first estimate the global fraction of their
ancestry which derives from each continent using the published gnomAD 4
ancestry PCs [75]. We next calculate a “personalized" allele frequency at each
site for each individual in the test study by weighting the gnomAD published
allele frequencies for each continental group by the estimated fraction of that
individual's ancestry coming from the continent. Assuming an overall
prevalence of CD of 0.00061, we convert reported effect sizes to p's on the
liability scale via Equation 90. We construct the PRS with Equation 130, using
the individual's personalized allele frequency at all sites. The Vpggs is calculated
using the average over all individuals of the personalized allele frequencies at
each site. The associated penetrance of each individual is found via
Equation 134, and then converted to an OR relative to a randomly chosen
individual. To compare these recommendations to the “standard” methods of
presenting PRS, we calculate the a PRS with Equation 44 and the associated
OR with Equation 47. First we consider 128 genome-wide significant SNPs
identified by the training study authors. All of these SNPs have been identified
after fine-mapping and represent the authors’ best estimate of the “casual”
variants in each LD region. If these SNPs are directly contributing to
phenotype, and the f's are the same between ancestries, the only difference
between training and test studies should be due to allele frequency
differences.

Values in Table 1 for the training study use only the reported summary statistics,
and should be thought of as akin to their expected values given the reported
effect sizes. Values for the test study are the observed values from the test
study. Given the allele frequencies at these sites, the Vpgs in the test study was
estimated as 0.047, very close to the observed values for these individuals, and
approximately 10% smaller than the training study. When OR is estimated in
the recommended fashion, interpretable results occur. The OR in controls is
approximately 1 on average, and 1.3 in cases, suggesting the combined effect
of these 128 variants which explain 4% to 5% of the variance have combined to
increase the odds of the average case by a factor of 1.3. There is no difficulty
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in interpreting differences between the training and test study. Using the
standard approach leads to values for the PRS and OR that are notimmediately
interpretable. While the standardly calculated OR in the training study appears
slightly different than the OR in test controls, it is likely close enough to avoid
any serious interpretation challenges.

Table 1 128 Genomewide Significant SNPs selected after fine-mapping. Means are
over individuals studied.

Recommended Standard
Study Vprs Mean PRS MeanOR 135 MeanPRS Mean OR 47
Training Population  0.053 0 ~1 1.87 8.99
Test Controls 0.045 0.004 1.005 1.84 8.34
Test Cases 0.046 0.082 1.315 211 10.92

Using more SNPs with less confident estimates of effect size in the training
study creates far more difficult interpretation challenges with the standard
method. To see this we now select any SNP with a reported p < 10~2 thinning
with the simplest possible algorithm. Any selected SNP within a megabase
of any other selected SNP is placed in a set. Each set is thinned to a single
member by selecting the SNP with the lowest p-value. This rather rudimentary
algorithm results in the selection of 574 SNPs (Table 2). Because the p-value
threshold is well above multi-test corrected significance, we expect many of
the selected SNPs to have no actual effect on phenotype. Their estimated g's
are pure noise. Also, because there was no careful attempt to account for the
effects of LD, we expect the selected SNPs to sometimes be in LD with the
actual effect sites in complex ways that might differ between studies. Given
the personalized allele frequencies, the Vpgrs was estimated to be 0.119 in the
training study, a value certainly inflated by the inclusion of variants not actually
contributing to the trait.

Table 2 574 SNPs with p < 10~3. Means are over individuals studied.

Recommended Standard
Study Vprs Mean PRS Mean OR 135 MeanPRS Mean OR 47
Training Population  0.136 0 Unknown —0.99 0.856
Test Controls 0.135 0.068 1.36 —-0.21 1.808
Test Cases 0.141 0.256 2.62 0.434 3.493

Here inclusion of sites with less evidence of effect and poor accounting for
LD leads to biased estimates using our recommended procedure. The control
mean is clearly larger than 0. It should be slightly less than 0. The observed
Vprs in both cases and controls appears biased upward. The estimated OR’s
also appear biased upwards. Nevertheless, the effect of including 574 SNPs
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can be directly compared to using only 128. Using more SNPs increased the
difference in PRS and OR means between cases and controls. This strongly
suggests that some of the newly included sites contribute to phenotype in
a meaningful way. A simple interpretation ensues: some but not all of the
newly included sites likely contribute to phenotype, but their effect sizes may
be poorly estimated, and LD incompletely accounted for. On the other hand,
the standard approach gives values that are exceedingly hard to interpret. The
mean PRS in the training study is substantially lower than the control mean
from the test study. In fact the difference between the training population
and test controls is larger than the difference between test cases and test
controls. OR’s show a similar pattern. More pointedly, the OR’s when using 574
SNPs seem to be on a wholly different scale than when using 128 sites. This is
presumably because those OR’s are relative to a hypothetical individual with
ApAp genotype at all loci. It is easy to believe that any investigator might find
interpretation of the standard PRS values very challenging.

3.4 Combining PRS with environmental factors

One could further elaborate on this analysis by explicit inclusion of known
environmental factors, to either increase the predictive power of a PRS or
perhaps to test for a PRS by environment interaction [88, 89]. As discussed in
[23], testing for interactions for continuously distributed factors is a complex
estimation problem often dependent on the precise distribution of the
continuous factors and their scale relative to each other. However, for any
combination of discretely distributed factors, testing for interaction is
straightforward and not dependent on the phenotypic or factor distribution.
Here we illustrate a methodology for discretizing a PRS and combining with a
binary environmental variable, but this basic procedure can be extended to
any number of categorical environmental variables.

Assume a binary environmental variable E, with two states E, and E;, with
average effect on phenotype P of ¢y and €1, respectively for the two states.
Estimate the effect of substituting environment E; for Ey, B = €1 —€p, in a
standard way (linear regression or linear mixed model, say), accounting for
population structure and other important covariates. For binary phenotypes,
estimate the OR of E; to E; in a logistic regression / mixed model again
accounting for the important covariates, and convert this ORg to fr measured
on the liability scale. Thus, for both a continuous or binary phenotype we have
the effect measured as Br on the phenotypic / liability scale. If fr, and
fr, = 1 — fg, are the frequencies individuals are in state Ey and E;, then the
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variance due to this environmental factor is V, = fEOfElﬁEZ. Calculate the
combined PRS + Environment score, PRSE; for individual j as

n
PRSE; = Pelej— fg,) + Z —24q,). (136)
Vprse = onfElﬂ%JrZZPv%g% (137)
v=1

where ¢; is 0 if individual j has environmental state Eq, and 1 otherwise. Of
course for a binary phenotype

Pr[D; = 1|PRSE;] = 1—®(tPRSE},1— Vpgsr) (138)
_ 1 CI)< t— PRSE]- > (139)
B V1= "Vprse /)

The simplest method to test for a PRS by environment interaction is to create
discrete PRS bins. For sufficiently large sample sizes, one might considered
PRS percentile (100) bins as described above. For smaller sample sizes quartile
(4) or decile (10) bins might be more appropriate. There are fundamentally two
sources of genetic by environment interaction. The first is correlation between
genotypic state and environmental state. This can be directly tested in this
framework by asking if the frequency of state E; differs between PRS bins.
This test could be asked comparing, perhaps, the first and last bin, or as an
“omnibus-test” by asking if the observed variance in the frequency of E; across
bins was greater than expected by chance. If there is significant variation in
environmental state between PRS bins, then an interaction exists.

An interaction induced by a correlation between genetic and environmental
states is not the only form of interaction that is possible. Regardless of whether
or not correlation in state exists between PRS and environment, we say a gene
by environment interaction exists if the mean phenotype of an individual
with a combination of PRS and environment states differs from the sum of
the mean given the environment plus the mean given the PRS. Adapting the
notation from [23], and assuming percentile bins, and environmental state E,,,

m € {0,1},
YEPRS,E, = E[P‘PRS bini E = Em] (140)
5Ig€PRsl-,Em = Y€PRS,E, — (E[PRSi] + :BE (m - fE1i)) (141)
2 100
lengRs,E = 001 Z ZfEm (SISEPRS E,,,) ’ (142)

m=0i=
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where f, is the frequency of environment E; in PRS bin i. If there is no
detectable variation in the frequency of environments across bins, then we
assume fr, = fg, for all bins i. Vitigepns r is the deviation variance caused by
non-additive interactions between PRS and environment E. One can test for
the significance of Vj, . in some standard way. Of course, one would
naturally estimate yeprs, r,, the average phenotype given the environment
and PRS bin, in the same manner used to estimate fr = €; — €p, with a linear
or logistic regressions controlling for presumed important covariates. As
usual, convert OR'’s to effect sizes on the liability scale for binary phenotypes.
In this manner we can observe and quantify interactions between PRS and
environment whether induced by correlation in state, deviations from
additivity, or both for quantitative or binary phenotypes.

4. Conclusion

Polygenic risk scores (PRSs) are a tool of modern human genetics with
tremendous potential to help understand the genetic basis of many important
human conditions and diseases. Despite its obvious potential, the field is full
of perplexing and confusing observations, particularly when applying PRSs
developed in one population to individuals from a different population. Here
we show that most of these observations can be well understood by a
combination of converting binary phenotypes to an unobserved normally
distributed liability scale, accounting for allele frequency differences between
studies and individuals, and recognizing that many of the measures
commonly used to evaluate a PRS are themselves a function of the variance
explained by the PRS which in turn is a function of the allele frequencies in the
individuals for whom the evaluation is made. PRS analyses themselves
provide little evidence that genetic effects differ between populations, other
than those induced by differing frequency and LD patterns.
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