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Abstract 

Single-cell analysis has become an essential tool in modern biological research, 
providing unprecedented insights into cellular behavior and heterogeneity. By 
examining individual cells, this approach surpasses conventional population-
based methods, revealing critical variations in cellular states, responses to 
environmental cues, and molecular signatures. In the context of cancer, with its 
diverse cell populations, single-cell analysis is critical for investigating tumor 
evolution, metastasis, and therapy resistance. Understanding the phenotype-
genotype relationship at the single-cell level is crucial for deciphering the 
molecular mechanisms driving tumor development and progression. This 
review highlights innovative strategies for selective cell isolation based on 
desired phenotypes, including robotic aspiration, laser detachment, microraft 
arrays, optical traps, and droplet-based microfluidic systems. These advanced 
tools facilitate high-throughput single-cell phenotypic analysis and sorting, 
enabling the identification and characterization of specific cell subsets, thereby 
advancing therapeutic innovations in cancer and other diseases. 
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1. Introduction 

Single-cell analysis has emerged as a cornerstone of modern biological 
research, offering unparalleled insights into the nuanced complexities of 
cellular behavior and heterogeneity [1-6]. In contrast to conventional 
population-based approaches, which aggregate data from numerous cells, 
single-cell analysis looks into the unique characteristics of individual cells, 
providing a comprehensive view of cellular diversity. This level of scrutiny 
allows researchers to uncover subtle yet significant variations in cellular 
states, responses to environmental cues, and molecular signatures that 
may go unnoticed in bulk analyses [7, 8]. Such granularity is indispensable 
for deciphering complex biological processes, including embryonic 
development, disease pathogenesis, and therapeutic interventions [9-12]. 
By dissecting the cellular landscape at the single-cell level, scientists can 
unlock a deeper understanding of cellular function and behavior, paving 
the way for transformative discoveries in biomedical science [13].  

Cancer is featured with the presence of heterogeneous cell populations 
within tumors, exhibiting variations in gene expression, phenotype, and 
functional properties [14-18]. This heterogeneity arises from genetic 
mutations, epigenetic modifications, and microenvironmental influences, 
contributing to tumor evolution, metastasis, and therapy resistance [19-23].  
Understanding cell heterogeneity in cancer is crucial for several objectives 
[1]. Treatment response and resistance: heterogeneous cell populations 
within tumors respond differently to therapies, leading to variable 
treatment outcomes [14,24-30]. Subpopulations of cells with intrinsic or 
acquired resistance mechanisms can evade cytotoxic effects, leading to 
treatment failure and disease relapse. By characterizing and targeting 
specific cell subsets, clinicians can devise more effective treatment 
strategies tailored to individual patients, improving therapeutic outcomes 
[2]. Disease progression and metastasis: cell heterogeneity plays a critical 
role in cancer progression and metastasis [6,31-33]. Subclones with 
enhanced migratory and invasive properties can disseminate from primary 
tumors, colonize distant sites, and establish metastatic lesions. The 
presence of distinct cell populations within tumors contributes to the 
formation of heterogeneous metastases, complicating treatment and 
prognosis. Understanding the cellular dynamics driving metastatic spread 
is essential for developing interventions to prevent or inhibit metastasis [3]. 
Biomarker discovery and patient stratification: cell heterogeneity offers 
valuable insights into disease biology and patient stratification [34-40].  
Identification of specific cell populations associated with aggressive 
phenotypes, poor prognosis, or treatment resistance can inform the 
development of prognostic biomarkers and therapeutic targets. By 
stratifying patients based on their molecular and cellular profiles, clinicians 
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can personalize treatment regimens, optimize therapeutic efficacy, and 
minimize adverse effects [4]. Precision Medicine and Therapeutic 
Innovation: In the era of precision medicine, targeting the unique 
molecular and cellular features of individual tumors is paramount [41-47]. 
Single-cell analysis enables the identification of rare cell populations, 
characterization of signaling pathways, and assessment of therapeutic 
vulnerabilities. By leveraging this information, researchers can design 
precision therapies that selectively target tumor cells while sparing normal 
tissues, enhancing treatment specificity, and minimizing off-target effects. 

Considering the important role of cellular heterogeneity in cancer, 
elucidating the relationship between phenotype and molecular genotype is 
essential. Phenotype, often representing traits like drug resistance, 
invasiveness, or responsiveness to stimuli, directly informs targeted 
therapeutic interventions. Conversely, genotype provides the molecular 
framework governing these phenotypic traits. Notably, a single phenotype 
can be influenced by multiple genotypic characteristics, and genotypic 
alterations can result in diverse phenotypic outcomes depending on 
contextual factors. These sophisticated interplays underscore the 
significance of correlating phenotypic and genotypic domains at single-cell 
resolution, offering invaluable insights into the mechanisms of tumor 
development, progression, resistance, and metastasis. Understanding the 
genotype-phenotype relationship also aids in discovering novel therapeutic 
targets. By elucidating how specific genetic changes translate into 
oncogenic phenotypes, researchers can identify new pathways and genes 
to target with innovative drugs, thus expanding the arsenal of therapeutic 
options available to treat various cancers.  

To identify cells exhibiting distinct phenotypes for subsequent molecular 
genotypic analysis, Fluorescence-Activated Cell Sorting (FACS) and 
Magnetic-Activated Cell Sorting (MACS) apparatuses are the first-
generation approach, enabling cell sorting based on surface markers or 
enzymatic activity. These methodologies offer a high throughput and are 
prevalent in research institutes, with FACS instruments becoming 
increasingly adept at sorting cells using a growing array of fluorescent 
markers. Nonetheless, there are significant limitations. Firstly, sorting relies 
on a single snapshot measurement, lacking the capacity to monitor 
temporal processes within individual cells. Moreover, FACS typically sorts 
cells post-trypsinization, resulting in the loss of original morphological 
features, spatial context, and complicating the differentiation based on 
shape or subcellular organelle distribution. Additionally, FACS fails to 
segregate cells according to functional behaviors, such as motility or 
persistence. In contrast, microscopy-based cell tracking offers a broader 
array of functionalities, encompassing cell behavior exploration, biosensor 
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kinetics, enzyme reaction kinetics, gene expression dynamics, and 
subcellular localization assessments. However, although microscopy 
enables phenotypic observation, there remains a necessity to selectively 
isolate cells of interest for subsequent genotypic analysis to decipher the 
underlying mechanisms governing phenotype or morphology. In this 
review, we will elucidate innovative strategies for selectively isolating cells 
based on targeted phenotypes, including selective cell detachment and 
retrieval, on-site cell marking for enrichment in subsequent stages, and the 
droplet-based approach, which facilitates observation and sorting. 

2. Single-cell Labeling and Isolation Methods 

2.1 Selective cell retrieval by robotic aspiration or laser detachment 

For analyzing target cells with desired phenotype, a straightforward idea is 
to selectively retrieve them for further downstream analysis. Robotic 
aspiration and laser microdissection are two conventional strategies. The 
robotic aspiration technique for single-cell retrieval leverages advanced 
micromanipulation technologies integrated with computer vision and 
motion control algorithms to achieve precise and efficient handling of 
individual cells (Figure 1A) [48-50]. The core principle involves a pick-and-
place system that can visually track a cell in real-time and accurately control 
positioning devices to pick up, transfer, and deposit a single cell at a specific 
location on a desired substrate. This process starts with a traditional glass 
micropipette, which is used to aspirate cells either partially or wholly. The 
technique incorporates computer vision to identify and track a target cell 
within the culture environment. Once the target cell is identified, the 
motion control algorithms coordinate the movement of the micropipette to 
approach and aspirate the cell. After aspiration, the robotic system 
precisely transfers the cell to a predetermined location on the substrate 
and deposits it for downstream analysis.  

Laser capture microdissection (LCM) is a conventional precise technique 
used to isolate specific cells or regions from heterogeneous tissue samples 
by employing a focused laser beam to cut around and capture the cells of 
interest (Figure 1B) [51-52]. The process involves preparing thin tissue 
sections or cell cultures on special slides, visualizing the sample under a 
microscope to identify target cells, and using the laser to either melt an 
adhesive film or directly cut around the cells for retrieval. There are also 
variations of laser cell extraction, including the microcapillary single cell 
analysis and laser extraction (μSCALE) system, which disrupts the surface 
tension of a microcapillary, ejecting its contents onto an cell isolation 
substrate with a UV pulsed laser [53]. Both aspiration and LCM offers 
several advantages, including availability of commercial instrument, high 
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precision, compatibility with downstream DNA, RNA, and protein analyses, 
and minimal sample processing. However, these approaches also have 
drawbacks, such as high initial cost of purchasing the instrument, time-
consuming manual identification and capture, potential risk of sample 
damage from aspiration or laser, and a limitation to thin tissue sections, 
which may not represent the tumor microenvironment. Despite these 
challenges, robotic aspiration and LCM remain useful and reliable 
strategies for isolating specific cells with minimal contamination, enabling 
detailed molecular profiling and analysis. 

 

Figure 1 Operation of Robotic Aspiration and Laser Microdissection for 
Selective Single-Cell Retrieval. (A) Robotic aspiration of target cells from cell 
cultures. (B) Laser capture microdissection for isolating target cells from 
tissue slides or cell cultures. 
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Another laser-based strategy for retrieving cells from enclosed 
microfluidics involves a multi-functional bottom substrate composed of a 
carbon nanotube-polydimethylsiloxane (CNT-PDMS) composite film 
(Figure 2A) [54].  In this microfluidic system, once target cells are identified, 
a nanosecond laser pulse is applied to the CNT-PDMS film to generate 
micro-bubbles. The carbon nanotubes (CNTs) within the PDMS matrix 
convert the incident optical energy into thermal energy, exploiting the 
composite's inherent nanoscale porosity to expand and merge nano-
bubbles [55,56]. This process results in rapid generation of heat-induced 
bubbles from within the PDMS, which then burst through the film surface. 
The targeted cell experiences shear forces from the bubble rupture and 
lateral displacement caused by bubble expansion, effectively detaching it 
from the surface. The CNT-PDMS composite film offers several advantages: 
(1) it supports highly biocompatible cell culture, (2) it can be easily 
integrated into microfluidic fabrication processes, and (3) it enables the 
generation of optically driven shear forces (or micro-bubbles) that disrupt 
cell adhesion to the surface. Additionally, the low thermal conductivity of 
PDMS protects cells from the heat generated in the CNT layer, thereby 
preserving cell viability. While this method is innovative and well-integrated 
with microfluidic systems, it requires a specific nanosecond pulse laser 
source, and a commercial system for this technology is not yet available. 

2.2 Microraft array for single-cell or clonal isolation 

Microraft arrays (MRAs) represent another engineering solution for 
selectively single cell or clonal retrieval (Figure 2B) [57,58]. It involves a 
substrate patterned with thousands of tiny, detachable polymeric "rafts," 
each capable of capturing and supporting individual cells. After cells are 
seeded onto the array and allowed to grow in isolation, they can be 
identified and analyzed using microscopy. The cells with target phenotype 
are then retrieved by dislodging the specific rafts using a robotic 
micromanipulator or a microfabricated needle, which can be assisted with 
laser cutting. This gentle, non-destructive process preserves cell viability 
and allows for detailed downstream analysis, such as single-cell sequencing. 
The microraft array is versatile, supporting various cell types, though it 
requires specialized microraft arrays or expertise for fabrication and 
manipulation. In addition, it is difficult to separate two daughter cells from 
one mother cell, as both daughter cells will be on the same microraft. 
Despite some limitations, this technology is reliable and valuable in 
minimizing effects on cells. 
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Figure 2 Selective cell retrieval using a nanosecond pulse laser on CNT-
PDMS film and microraft arrays. (A) Laser-induced bubbles on CNT-PDMS 
film facilitate cell detachment and retrieval from enclosed microfluidics. (B) 
Microrafts carrying cells of interest are selectively retrieved. 

2.3 Optical traps for selective single-cell isolation based on 
phenotypes 

Optical traps, also known as optical tweezers, are another sophisticated 
tool that uses highly focused laser beams to manipulate and isolate single 
cells with high precision (Figure 3A) [59-63]. The core principle involves the 
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gradient force exerted by the laser light on the cell, which allows for non-
contact manipulation and detailed measurement of cellular properties. To 
build an optical trap, a laser beam is tightly focused through a microscope 
objective lens, creating a highly intense electric field at the focal point. The 
intensity is critical as it generates a gradient force that draws the cell toward 
the region of highest light intensity, effectively trapping it. Concurrently, a 
scattering force from the momentum transfer of photons acts in the 
direction of light propagation. For stable trapping, the gradient force must 
surpass the scattering force, which is accomplished through precise laser 
focusing. Once the cell is stably trapped, it can be manipulated by moving 
the laser beam or adjusting the focus, facilitating various types of single-
cell phenotypic analyses. These analyses include measuring the mechanical 
properties of the cell by applying known forces and observing deformation, 
thereby assessing stiffness and elasticity. Optical tweezers can also be used 
for force spectroscopy to measure forces involved in cellular processes like 
division or migration. Additionally, intracellular transport can be studied by 
tracking the movement of organelles or vesicles within the trapped cell, 
providing insights into cellular dynamics. In addition to inducing lateral cell 
movement, optical tweezers can be employed to exert forces in the vertical 
direction, enabling the selective levitation of single cells from microwells for 
isolation [64]. The technique is also valuable for single-molecule studies, 
where specific molecules are attached to the cell's surface or interior to 
investigate molecular interactions and dynamics within the cell [65]. Optical 
tweezers facilitate non-invasive observation and manipulation of cells, 
preserving their viability and enabling real-time analysis of dynamic 
processes in their native environment. While this method is effective for 
non-adherent objects, such as yeast, bacteria, and immune cells, it is not 
suitable for moving adherent cancer cells. Additionally, the technique has 
limitations, including the complexity of the optical setup and moderate to 
low throughput for cell sorting. 

2.4 Selective cell isolation based on cellular motility or deformability 

Under specific conditions, certain phenotypes can facilitate selective cell 
isolation. For instance, cell separation based on motility and chemotaxis, 
critical in cancer dissemination [66-70], can be achieved using engineered 
microfluidic devices [5,6,71,72]. These devices typically feature paired wells 
connected by cell migration channels (Figure 3B). Initially, cells are seeded 
into one well. After allowing for cell adhesion to the substrate, a 
chemoattractant is introduced into the opposite well to induce cell 
migration through the channels. The fast-moving cells that migrate to the 
other well can then be easily harvested through trypsinization. Similarly, 
cell deformability, a phenotype associated with cancer invasion, can be 
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exploited for separation using a microfluidic device [73-74]. A microfluidic 
mechanical deformability chip, for example, employs artificial 
microbarriers to differentiate flexible cells from stiff ones using 
hydrodynamic forces [75-76]. More elastic cells pass through the 
microbarriers and exit the separation chip, while stiffer cells remain 
trapped. Although those microfluidic platforms are highly effective for 
phenotypic-based cell separation, their applicability is limited to 
phenotypes characterized by distinct motility or deformability, thus 
restricting its applicability to a broader range of applications. 

 

Figure 3 Schematics of optical traps and microfluidics for phenotype-based 
cell selection. (A) Cells of interest are trapped and manipulated using 
optical traps for isolation. (B) Fast-moving cells are guided by a chemo-
gradient through migration channels, facilitating motility-based selection. 
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2.5 On-site cell marking for further separation 

In addition to retrieving cells immediately, an alternative is to mark cells 
with certain phenotype with fluorescence or other markers. The marked 
cells can be separated in the following steps [77-82]. SPOTlight is a 
representative example of this concept (Figure 4A) [83]. Target cells, such 
as bacteria, yeast, or mammalian cells, can be made optically taggable by 
introducing photo-transformable fluorescent proteins or dyes that shift 
from a dim to bright state or change colors when excited by specific light 
wavelengths. This tagging can be applied to naturally heterogeneous cell 
populations as well as cell libraries, such as those used in siRNA screens. 
Cells are imaged to identify phenotypes of interest, which are quantified at 
single-cell resolution. Cells of interest are selected based on their 
phenotypic profiles and optically tagged via single-cell illumination. The 
tagged cells are then identified and isolated using FACS. Subsequently, the 
selected cells undergo genotyping or further characterization as needed. 
Alternatively, cells can be labeled by attaching streptavidin-coated 
magnetic beads to their membranes using the lasers of a confocal 
microscope for sorting [84,85]. A simple magnet can then be used to 
achieve highly specific isolation of the labeled cells, which remain healthy 
and continue to proliferate normally. The advantages of optical tagging 
include its high precision, allowing cellular resolution targeting; temporal 
control, enabling the study of rapid biological events; versatility across 
various cell types and applications, including optogenetic control, 
photothermal therapy, and fluorescence activation; and real-time feedback, 
enhancing accuracy and efficiency. However, the use of 
phototransformable fluorescent proteins or dyes and the need for 
prolonged or intense single-cell illumination could potentially affect cell 
viability or alter cell status. Additionally, the throughput of this method 
might be constrained by the time required for illumination, image 
collection, and processing to select cells exhibiting the desired phenotypes. 
If the proportion of labeled cells is relatively low, significant cell loss may 
occur during the subsequent FACS step. 

2.6 Single-cell phenotypic analysis and sorting within droplets 

Another promising approach involves performing single-cell phenotypic 
assays within droplets, which can be efficiently sorted using microfluidics or 
FACS. Droplet-based microfluidics entails creating and manipulating minute 
droplets within microchannels, each acting as isolated microreactors [86-88]. 
This technology facilitates high-throughput single-cell analysis, biochemical 
reactions, and assays by compartmentalizing samples, providing precise 
control over the microenvironment, and enabling efficient, scalable 
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biological and chemical experimentation. For example, droplet-based 
microfluidics can isolate individual antibody-secreting cells from a large 
number of non-secreting cells at high throughput [89-91]. These principles 
and methods are highly adaptable for various applications. By screening for 
antigen binding, the droplet system rapidly selects cells that secrete target-
specific antibodies. Its high throughput and ability to preserve cell viability 
enable the testing of primary blood cells from patients without the need for 
cell immortalization. The fluorescence-based binding assay can be adapted 
to measure any secreted molecule with a fluorescently labeled ligand, such 
as insulin, chemokines, or growth factors. Additionally, using fluorogenic 
substrates, the protocol can be tailored for high-throughput screening, 
directed enzyme evolution, or screening antibodies and molecules that 
inhibit enzyme activity. This versatile approach can analyze a wide range of 
cells, including bacteria, yeast, and mammalian cells, by examining the 
activities of secreted, cell-surface, or intracellular proteins. However, it is 
important to note that not all assays are well-suited for the droplet format. 
Although droplet splitting and fusion allow operations such as washing or 
adding new reagents, completely removing reagents from an initial reaction 
before introducing new ones is challenging [92-94]. Furthermore, adhesion-
dependent epithelial cancer cells might suffer from anoikis due to loss of 
anchorage [29,95,96], making long-term culture of adherent cancer cells 
within droplets difficult and limiting the applications in cancer research. 

Building on the concept of cell phenotypic assays in droplets, hydrogel 
nanovials have been developed for single-cell phenotypic analysis and 
sorting (Figure 4B) [97-99]. The core principle involves encapsulating 
individual cells within hydrogel nanovials, which are microscopic, 
suspendable containers made of biocompatible hydrogel material. These 
nanovials are engineered with functionalized surfaces to capture and retain 
single cells along with reagents necessary for specific assays. Each hydrogel 
nanovial provides an isolated microenvironment where individual cells can 
undergo various functional assays, such as enzymatic activity, protein 
secretion, or cell-cell interactions. The hydrogel material allows for the 
diffusion of small molecules and reagents, facilitating real-time monitoring 
of cellular responses. The nanovials can be suspended in a fluid, enabling 
easy handling and manipulation within microfluidic systems. The process 
begins with the loading of single cells into the nanovials for cell 
encapsulation. Once loaded, the cells can be assayed directly within the 
nanovials. The functionalized surfaces can capture secreted molecules or 
enable reactions that produce detectable signals, such as fluorescence, 
which correlate with specific cellular functions. After the phenotypic assays, 
nanovials containing cells of interest can be sorted using FACS techniques 
adapted for hydrogel particles. This allows for the rapid and precise isolation 
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of cells based on their phenotypes as detected within the nanovials. 
Hydrogel nanovials combine the advantages of droplet-based systems and 
support the survival of adherent cancer cells. However, certain phenotypes, 
such as cell morphology or the organization of organelles, might be difficult 
to visualize, and tracking individual cells over time is also challenging. 
Despite these limitations, hydrogel nanovials represent a powerful tool for 
high-throughput single-cell functional analysis and sorting. 

 

Figure 4 Cell selection via SPOTlight and droplet systems. (A) Cells labeled 
with phototransformable proteins or dyes are selectively transformed to 
different colors in situ and subsequently isolated by FACS. (B) Cells cultured 
in nanovials undergo fluorescent assays and are selected by FACS. 
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2.7 Single-cell in situ analysis with spatial-omics technologies 

In addition to single-cell selective marking and isolation techniques, spatial-
omics technologies offer alternative approaches for in situ single-cell 
analysis, yielding valuable insights into the microenvironmental context of 
individual cells. In spatial transcriptomics, methods such as 10x Genomics 
Visium, Slide-seq, and MERFISH are prominent. 10x Genomics Visium 
captures spatially resolved transcriptomes by combining tissue sections 
with RNA sequencing on barcoded slides, whereas Slide-seq uses DNA-
barcoded beads to map gene expression profiles across tissue samples 
[100,101]. MERFISH (Multiplexed Error-Robust Fluorescence In Situ 
Hybridization) utilizes sequential hybridization and imaging to detect 
thousands of RNA species in fixed tissues, enabling high-throughput spatial 
analysis [102]. Spatial proteomics technologies like Imaging Mass 
Cytometry (IMC), CODEX (CO-Detection by Indexing), and MIBI 
(Multiplexed Ion Beam Imaging) provide high-resolution protein 
expression maps [103-107]. IMC integrates mass spectrometry with 
immunohistochemistry by using metal-tagged antibodies, allowing for 
multiplexed protein detection. CODEX employs DNA-barcoded antibodies 
and cyclic immunofluorescence to achieve high-dimensional protein 
profiling, while MIBI uses secondary ion mass spectrometry to map 
proteins at subcellular resolution. For spatial metabolomics, Imaging Mass 
Spectrometry (IMS) and Secondary Ion Mass Spectrometry (SIMS) are key 
techniques [108-110]. IMS, including methods like MALDI (Matrix-Assisted 
Laser Desorption/Ionization) and DESI (Desorption Electrospray Ionization), 
ionizes metabolites directly from tissue sections to analyze their spatial 
distribution. SIMS uses a focused primary ion beam to sputter secondary 
ions from the sample surface, providing detailed metabolite maps. These 
technologies collectively enable the integration of transcriptomic, 
proteomic, and metabolomic data, offering a comprehensive 
understanding of cellular molecular features within their native tissue 
context. Spatial-omics technologies, despite limitations such as spatial 
resolution constraints in achieving single-cell precision, high costs, inability 
to integrate with functional assays, and challenges in data quality and 
normalization, provide their unique value for in situ analysis of complex 
biological microenvironments. 

3. Conclusions and Perspectives 

Single-cell analysis has transformed modern biological research by 
providing unprecedented insights into cellular behavior and heterogeneity. 
Unlike conventional population-based methods, this approach examines 
individual cells, revealing significant variations in cellular states, responses 
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to stimuli, and molecular signatures often obscured in bulk analyses. This 
level of detail is crucial for understanding complex physiological and 
pathological processes, enabling researchers to gain profound insights into 
cellular function and behavior, thus driving groundbreaking discoveries in 
biomedical science. In cancer research, single-cell analysis is particularly 
essential due to the notorious heterogeneity within tumor cell populations, 
which exhibit diverse gene expression, phenotypes, and functional 
properties. This heterogeneity, influenced by genetic mutations, epigenetic 
alterations, and microenvironmental factors, profoundly affects tumor 
progression, metastasis, and treatment resistance. Deciphering this 
heterogeneity is essential for advancing cancer treatment, as distinct cell 
subpopulations within tumors respond differently to therapies, leading to 
resistance and disease recurrence. By characterizing and targeting specific 
cell subsets, clinicians can develop personalized treatment strategies with 
improved efficacy. Specifically, advancements in single-cell analysis have 
revolutionized the ability to correlate phenotypic and genotypic data at the 
individual cell level, a critical step in understanding the molecular 
mechanisms underlying cell behaviors. Cutting-edge techniques, such as 
robotic aspiration, laser detachment, microraft arrays, optical tweezers, 
optical labeling, microfluidics, hydrogel nanovials, and droplet-based 
systems, offer promising strategies for high-throughput single-cell 
phenotypic analysis and selective cell isolation for genotypic downstream 
characterizations. However, challenges remain in analyzing certain 
phenotypes and tracking individual cells over time. Additionally, the 
complexity and cost of initial setups, along with limited throughput in many 
systems, constrain the investigation of phenotype-genotype correlations.  

Future advancements in deep learning are poised to significantly enhance 
single-cell techniques across three primary areas: (1) Automating selective 
cell picking using computer vision, rather than human discretion, to 
markedly increase the throughput and reproducibility of single-cell 
isolation. (2) Optimizing the control of robotic aspiration and droplet 
systems to improve precision and efficiency. (3) Identifying complex 
patterns and relationships within single-cell data that are otherwise difficult 
to discern, with deep learning models integrating multi-omics data to 
provide comprehensive insights into cellular heterogeneity and function 
[111-114]. Additionally, advances in robotics operating microfluidic and 
other platforms will significantly boost the throughput, reliability, and 
reproducibility of experiments [115-118]. The data generated through 
robotic operations can further enhance the application of data science in 
system optimization, normalization, and quality control of single-cell data. 
Although challenges remain, rapid developments in robotics and deep 
learning will gradually address these issues, greatly enhancing the 
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capability of analyzing individual cells in biomedical research. This progress 
is particularly valuable in cancer research, where understanding cellular 
heterogeneity is essential for advancing precision medicine and fostering 
therapeutic innovation. 
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